山地生态系统通量足迹遥感像元尺度空间代表性分析

邬昌林,谢馨瑶,李爱农

中国科学院水利部成都山地灾害与环境研究所数字山地与遥感应用中心,成都610041;
 王朗山地遥感四川省野外科学观测研究站,绵阳621000

摘 要: 遥感技术是大尺度上估算地表碳、水和能量等通量的重要信息来源。全球涡度通量观测数据集已广泛 用于遥感通量数据产品的生产和评价,因此,科学评估遥感像元尺度上通量足迹的空间代表性对于遥感通量产 品建模、验证和生产尤为重要。本文选择中国西南典型山地生态系统一王朗山地遥感四川省野外观测研究站 (简称王朗站)区域为研究对象,使用二维参数化足迹模型刻画了通量观测足迹的时空变化特征,同时解析了通 量观测足迹在多个遥感像元尺度(30 m、60 m、120 m、250 m、500 m、1000 m、1500 m和2000 m)上的空间代 表性。结果表明:在通量足迹的空间变化上,王朗站内不同观测塔通量足迹范围跨度较大(10—10³ m)且对称 性较低(通常在40%以下),因此在山地生态系统进行遥感模型及产品验证时需要更加关注通量足迹的空间代表 性差异;在通量足迹的时序变化上,王朗站内日尺度上的足迹重叠性差异明显(0%—88%),结合时序变化的足 迹特征可进一步提升高时间分辨率下的模型验证和产品精度;王朗研究区内落叶阔叶灌丛站点、落叶阔叶林站 点和常绿针叶林站点等3个观测塔的高度为10 m、30 m和75 m,其分别在30 m、60 m和1000 m像元尺度取得对 通量足迹的最佳空间代表性。总之,由于山区通量观测的高空间代表性局限于高空间分辨率(观测高度较低时) 和中低空间分辨率(观测高度较高时)的遥感像元,认知通量足迹在不同遥感像元尺度上空间代表性的差异, 结合多尺度遥感观测数据和时空尺度扩展方法,可促进山区生态系统参量估算和通量研究。本研究可为站点观 测尺度扩展、山地生态系统遥感数据产品生产和地球系统模型验证提供参考。 关键词:遥感像元,空间代表性,涡动技术,通量足迹模型,山地生态系统

中图分类号: TP70/P2

引用格式: 邬昌林,谢馨瑶,李爱农.2024.山地生态系统通量足迹遥感像元尺度空间代表性分析.遥感学报,28(10): 2632-2650 Wu C L, Xie X Y and Li A N. 2024. Spatial representativeness of flux footprints at pixel scales over mountainous ecosystems. National Remote Sensing Bulletin, 28(10): 2632-2650[DOI:10.11834/jrs.20232509]

1 引 言

地表与大气之间的能量和物质交换(通量) 主要通过大气边界层中的湍流活动实现。作为直 接测定湍流通量的微气象学技术,涡度相关技术 EC(Eddy Covariance)已广泛用于研究大气与陆地 生态系统间碳、水和能量的交换过程(Baldocchi, 2003;于贵瑞等,2006)。自90年代以来,随着通 量塔的陆续建立,全球形成了多个区域通量观测 网络(Fluxnet),如ChinaFlux(于贵瑞等,2006)、 AsiaFlux(Mizoguchi等,2009)、AmeriFlux(Novick 等,2018)及CarboEurope(Dolman等,2006)。 一般来说,通量观测值局限于站点尺度上的贡献 源(Hsieh等,2000; Kljun等,2015; Kormann和 Meixner,2001)。因此,研究通量观测的空间代表 性有助于进一步认知大尺度上陆地生态系统和大 气间的通量交换过程(Chen等,2011)。

大尺度上,涉及通量观测的空间代表性表征 了给定空间范围内的通量观测信息反映目标区域 实际状况的能力(Nappo等,1982),一般分为如 下两个方面:(1)通量观测网络在区域、国家、 洲际或全球等尺度上的代表性(Hargrove等, 2003),即分布稀疏的通量观测网络代表目标尺度 上通量交换过程的程度;(2)通量观测值的贡献

收稿日期: 2022-10-20; 预印本: 2023-02-09

基金项目:国家重点研发计划(编号:2020YFA0608702);国家自然科学基金(编号:42201418);中国博士后面上项目(编号:2021M700139); 中国科学院特别研究助理项目;中国科学院青年促进会项目

第一作者简介: 邬昌林,研究方向为山地植被遥感。E-mail:2020226066@chd.edu.cn

通信作者简介: 李爱农,研究方向为山地定量遥感。E-mail:ainongli@imde.ac.cn

源与遥感像元间的相关性 (Schmid, 1997), 即站 点尺度上的通量观测反映遥感像元尺度上通量交 换过程的程度。近年来,国内外学者已对多个通 量观测网络的空间代表性开展了定量评估,包括 AmeriFlux (Hargrove 等, 2003; Villarreal 和 Vargas, 2021)、CarboEurope (Sulkava 等, 2011)、ChinaFlux (Wu等, 2022; 王绍强等, 2013)。此类研究主要 采用多元空间统计分析技术,使通量观测数据能 够覆盖不同的生态区,从而评价已有观测网络的 空间代表性以及对未来观测网络建设的选址建议。 例如, Sulkava等(2011)针对CarboEurope的空间 代表性,提出了一种网络设计定量化方法,并建 议可以通过增减通量观测塔来优化现有观测网; 王绍强等(2013)针对ChinaFlux的空间代表性, 采用多元变量空间聚类方法建立了中国通量生态 区,指出了能够有效覆盖中国生态系统多样性的 通量观测网络应包含150个观测塔。

近年来,全球通量数据集已广泛用作(1)驱 动信息来生产通量数据产品(Verma等, 2015)和 (2) 验证信息来评估地球系统模型和遥感产品 的可靠性(Ricciuto等, 2018)。以碳循环过程关 键通量一植被总初级生产力 GPP(Gross Primary Productivity)为例,相关研究结合机器学习方法和 遥感、气象等格网数据将站点 GPP 尺度上推, 生 成了多个全球尺度的GPP产品(Jung等, 2011, 2020)。从模型验证的角度,站点数据常用于评价 代表性模型估算 GPP 的能力,包括植被光能利用 率模型(Xie和Li, 2020; Zheng等, 2020; Zhou 等, 2016)、植被指数模型(Sims等, 2008; Wu 等, 2011; Xie和Li, 2020) 及过程模型(Liu等, 1997; Running和Hunt, 1993)等。上述数据产品 和模型常常以遥感像元尺度呈现,站点通量数据 在像元尺度的空间代表性将影响数据产品的质量 和模型评估验证的精度。然而,目前在大尺度模 型评估和通量产品生产时,大部分研究通常以观 测塔周围固定像元区域(如500m)作为站点通量 的贡献源区进行验证(Chen等, 2012; Zhou等, 2016),将不可避免的引入偏差。因此,"像元尺 度上通量足迹的空间代表性问题"仍然是数据 产品生产和模型评估中面临的一个主要挑战 (Durden 等, 2020)。

涡度相关通量数据具有丰富的时间尺度,但 在空间上受贡献源区变化的影响通常表现出异质 性(Ran等,2016)。已有研究发现单时次上的风向、下垫面地表特征以及大气湍流状态等因素都 会影响通量源区的范围(Schmid,2002)。例如, 孙赛钰等(2021)基于黑河流域的通量数据对3种 常用足迹模型进行敏感性分析,发现侧向风速标 准差将影响侧风足迹从而导致源区面积的变化; Heidbach等(2017)利用示踪实验发现草地观测 塔的通量足迹对近迎风区边缘森林表面粗糙度的 突变敏感。因此,在使用站点通量数据进行产品生 产和模型评估时,需要特别注意通量足迹在遥感 像元尺度上的空间代表性问题,"足迹意识的缺失" 将在陆地生态系统和大气间通量交换过程的相关研 究中导致未知的偏差及不确定性(Metzger,2018)。

随着卫星对地观测技术表现出的大区域性、 快速性以及实时性等优势,基于遥感像元的地球 系统模型已成为大尺度上估算地表碳、水和能量 等通量的重要方式,评估像元尺度上通量足迹的 空间代表性变得至关重要。因此,为了评估遥感 像元尺度上通量足迹的空间代表性对遥感通量产 品建模、验证和生产的影响,本研究拟以中国典 型西南山地生态系统一王朗山地遥感四川省野外 观测研究站(简称王朗站)的3个涡度相关塔为 例,重点关注点(塔)涡度相关观测与像元间的 空间代表性问题,主要研究内容包括:(1)刻画 王朗站通量观测足迹的空间范围和不同时期的阶 段性变化;(2)解析王朗站通量观测足迹在多个 遥感像元尺度(30m、60m、120m、250m、500m、 1000 m、1500 m和2000 m)上的空间代表性。本 研究结果可为站点观测尺度扩展、遥感数据产品 生产和地球系统模型验证等提供参考。

2 研究区与数据

2.1 王朗山地遥感四川省野外观测研究站

王朗山地遥感四川省野外观测研究站 (32°58′N,104°06′E)位于四川省绵阳市平武县王 朗国家级自然保护区内(图1(a))。王朗保护区 地处青藏高原东部边缘和横断山脉之间,位于中 国南北气候分界线上,自身是一个相对闭合的流 域,流域面积约为325 km²,为开展山地水文和物 质平衡等研究提供了有利条件。此外,王朗保护 区内存在的植被类型较齐全(如阔叶林、针叶林、 灌丛和草地等),构成了明显的山地植被垂直分布 特征,非常适合开展山地地表过程的观测研究。

目前, 王朗站已建成3个不同植被类型(落叶 阔叶灌丛、落叶阔叶林和常绿针叶林)的永久观 测样地, 还建设了3个遥感观测塔(李爱农等, 2018)。每个塔都安装了涡度协方差测量系统、光 合有效辐射测量仪、四分量表以及土壤热通量、 温湿度观测矩阵、冠层红外温度、气象等观测设 备。本研究选取了王朗站内3个涡度相关观测塔进 行通量足迹的空间代表性分析(图1(b)), 3个观 测塔均位于王朗保护区白熊沟山谷中。其中,落 叶阔叶灌丛站点(简称灌丛站)观测塔高10m, 高程约为2883m,处于西南向山坡上(坡度约为 23°),生长期灌丛高度约为5m;落叶阔叶林站点 (简称阔叶林站)塔高30m,高程约为2723m,坡向 朝南(坡度约为21°),生长期植被高度约为20m; 常绿针叶林站点(简称针叶林站)塔高75m,高 程约为2880m,山坡面向东南(坡度约为14°), 植被冠层高度约为55m。

2.2 数据及预处理

2.2.1 涡动相关仪数据

研究选取了王朗站内3个通量塔2020年的涡动相关观测数据,用于计算通量贡献源区,主要包括摩擦风速、莫宁奥布霍夫长度、侧向风速标准差、观测高度处的风速和风向等。利用美国LI-COR公司的EddyPro软件对涡动相关仪原始采集的10赫兹湍流数据进行一系列的前置预处理,处理时取平均时段为30min。参考相关研究(双喜等,2009;王维真等,2009),前置的预处理过程主要包括野点(瞬发噪声)去除、延迟时间校正、坐标旋转(倾斜修正)、频率响应修正、超声虚温修正和WPL(Webb-Pearman-Leuning)密度修正等。

2.2.2 植被类型数据

研究利用王朗保护区植被类型数据来表征王 朗站3个通量塔中心不同像元尺度范围内的植被特 征(Xie等,2021)。该植被类型数据的空间分辨 率为10m,包含常绿针叶林、常绿阔叶林、落叶 阔叶林、落叶针叶林、针阔混交林、落叶灌木林、 常绿灌木林、草地、稀疏草地和其他类型。

2.2.3 Sentinel 遥感影像

哨兵2号(Sentinel-2)高分辨率多光谱卫星 搭载了多光谱成像仪(MSI),覆盖可见光到短波 红外共13个波段。Sentinel-2由A和B两个卫星组 成,2颗卫星可实现对全球地表每5天一次的完整 成像,影像的最高空间分辨率可达10m。研究选 取了2020年内王朗站3个通量塔足迹范围内所有 的无云影像,用于分析通量足迹在像元尺度的空 间代表性。如表1所示,Sentinel-2Level-2A地表 反射率影像均通过谷歌地球引擎下载获得,共包 括27景。其中,灌丛站、阔叶林站和针叶林站分 别有19景、23景和22景的影像用于后续通量足迹 在多个遥感像元尺度的空间代表性分析。该反射 率产品已进行正射校正和大气校正等预处理,可 直接用于遥感定量分析。本研究中,Sentinel-2地 表反射率数据主要用于计算时序归一化植被指数 NDVI (Normalized Difference Vegetation Index),具 体计算公式如下:

$$NDVI = \frac{NIR - R}{NIR + R}$$
(1)

式中, NIR 和 R 分别为近红外和红光波段反射率。

表1 本文所用Sentinel-2卫星影像信息

日期	图幅号	日期	图幅号	日期	图幅号
2020-01-05	T48SVB	2020-04-09	T48SVB	2020-10-21	T48SVB
2020-01-30	T48SVB	2020-04-14	T48SVB	2020-11-10	T48SVB
2020-02-04	T48SVB	2020-04-29	T48SVB	2020-11-15	T48SVB
2020-02-09	T48SVB	2020-05-04	T48SVB	2020-11-25	T48SVB
2020-02-19	T48SVB	2020-05-29	T48SVB	2020-11-30	T48SVB
2020-02-24	T48SVB	2020-06-03	T48SVB	2020-12-05	T48SVB
2020-02-29	T48SVB	2020-06-18	T48SVB	2020-12-10	T48SVB
2020-03-20	T48SVB	2020-08-27	T48SVB	2020-12-20	T48SVB
2020-03-25	T48SVB	2020-09-06	T48SVB	2020-12-30	T48SVB

3 研究方法

3.1 通量足迹模拟及分析

3.1.1 通量足迹模型

足迹函数又称源权重函数,描述了大气边界 层内地表源(汇)空间分布和观测通量之间的关 系。通量足迹函数($\psi(x, y)$)可表达为侧向通量 积分函数($f^{y}(x, z)$)和侧风分布函数($D_{y}(x, y)$) 的乘积。公式如下:

$$\psi(x,y) = f^{y}(x,z) \times D_{y}(x,y)$$
⁽²⁾

目前学者们已发展了多种足迹模型,如解析 足迹模型、基于大涡模拟和拉格朗日随机理论 的足迹模型和基于多足迹模式结合的足迹模型 等(Chu等,2021)。本研究使用Kljun等(2015) 提出的二维参数化足迹模型FFP(Flux Footprint Prediction)对通量塔中心区域内的通量足迹分布 进行模拟。FFP模型是利用朗格朗日随机法建立的 近似解析模型,属于多足迹模式结合的足迹模型, 广泛适用于不同的大气条件和观测高度。该模型 基于量纲分析将输入参数组成无量纲的参数组, 将其重构得到无量纲侧风积分足迹函数。随后, 分别对无量纲侧风积分足迹函数和侧风距离标准 差进行拟合,将其反推建立侧风积分足迹函数。最 后,结合侧风分布函数即可得到二维的足迹分布函数。FFP模型的详细介绍可参照Kljun等(2015)。

3.1.2 通量足迹模拟设计

利用王朗站3个通量塔处理后的半小时通量数 据驱动FFP模型,分别计算得到3个通量塔半小时 的通量足迹,生成了以塔为中心的二维足迹权重 网格。通过通量观测输出的潜在入射短波辐射数 据将通量数据分别划分为白天(>0 W/m²)或夜间 (<0 W/m²)类型(Chu等,2021),随后将研究时 段内所有可用的足迹权重网格分别聚合为不同时 间分辨率(如日,月和年尺度等)白天、夜间和 全天的通量足迹。由于足迹模型的不确定性随着 传感器逆风距离的增加而增大,实验中截取了 80% 源权重范围线内的通量足迹用于后续的分析 (Kim等,2018)。

3.1.3 通量足迹特征指数

为了评估王朗站3个观测塔通量足迹的差异, 本文分别计算了每个塔白天、夜间和全天的最长 足迹距离、足迹对称指数和足迹时序重叠指数。

(1)最长足迹距离FF(Footprint Fetch)。最长 足迹距离定义为由塔的位置到相应通量足迹轮廓 (本文为80%贡献源)的最大距离,可表示为

$$FF_{j} = \max(\sqrt{x_{ij}^{2} + y_{ij}^{2}})$$
 (3)

式中,*j*为不同的足迹轮廓,FF_{*i*}为最长足迹距离, *x_u*和*y_u*分别为足迹轮廓线上第*i*个点的横纵坐标。

(2) 足迹对称指数 FSI (Footprint Symmetry Index)。足迹对称指数用于表征通量足迹的规则程度,计算公式如下:

$$FSI_j = \frac{A_j}{\pi \times (FF_j)^2}$$
(4)

式中, *j*代表不同的足迹轮廓, FSI₂代表足迹对称 指数, FF₂代表最长足迹距离, *A*₃为足迹轮廓线所围 成的区域面积。足迹对称指数的取值范围为0—1, 值为1时表示以塔位置为中心的完美对称(圆形) 的通量足迹。

(3) 足迹时序重叠指数FOI (Footprint Overlap Index)。足迹时序重叠指数包括了月尺度(日尺 度)时序重叠指数和昼一夜间重叠指数,两种指 数的取值范围都为0—1。当两种指数的值为1时, 分别表示月尺度(日尺度)或昼夜间完美的时序 重叠通量足迹。这两种指数可由下式求得:

$$FOI_{j} = \sum_{i=1}^{l} (\prod_{k=1}^{K} \psi_{ik})^{l/K}$$
(5)

$$\operatorname{FOI}_{j_\operatorname{daynight}} = \frac{1}{K} \sum_{k=1}^{K} \sum_{i=1}^{l} (\psi_{ik}^{\operatorname{day}} \times \psi_{ik}^{\operatorname{night}})^{1/2}$$
(6)

式中,*j*代表不同的足迹轮廓,FOI_j和FOI_{j_daynight}分 别代表月尺度(日尺度)时序重叠指数和昼-夜间 重叠指数, ψ_{ik}^{day} 和 ψ_{ik}^{night} 分别为足迹内第*i*个像元上 第*k*个月(日)白天与夜间的足迹权重,*I*和*K*则 分别表示足迹内像元总数及一年(月)中可获得 月(日)尺度通量足迹的月(天)数。

3.2 通量足迹在遥感像元尺度上的空间代表性分析

针对多个遥感像元尺度(30m、60m、120m、 250m、500m、1000m、1500m和2000m),本文 采用NDVI和植被类型表征足迹范围的植被异质 性,进一步分析通量足迹在遥感像元尺度上的空 间代表性。

3.2.1 植被异质性影响下的空间代表性评估

对于与植被类型异质性相关的空间代表性评 估,本文首先识别足迹内的主要植被类型百分比 (拥有最高足迹权重百分比的植被类型,P_{footprint})和 不同像元尺度内该植被类型的百分比(P_{target}),并 基于P_{footprint}和P_{target}评估通量足迹与不同像元尺度间 植被类型的空间代表性差异。对于与植被密度异 质性相关的空间代表性评估,本文首先将基于 Sentinel-2影像的可用NDVI数据与对应时段的通 量足迹相匹配。Sentinel-2数据最优情况的时间分 辨率为5 d,为了匹配该数据的最优时间分辨率, 实验中将NDVI数据的时间代表性设为5d。基于 影像获取时间前后2d(共5d)的通量观测数据分 别计算该时间段内白天、夜间和全天的通量足迹 进行空间代表性分析。对于每个可获得NDVI数据 的时间步长,分别计算遥感像元尺度内的NDVI (NDVI_{target})、足迹范围内的NDVI(NDVI_{footprint})和 相对偏差(MRE_{NDVI}):

$$NDVI_{\text{footprint}} = \sum_{j=1}^{J_1} (\psi_j \times NDVI_j)$$
(7)

$$NDVI_{target} = \sum_{j=1}^{J_2} (\psi_j \times NDVI_j)$$
(8)

$$MRE_{NDVI} = \frac{NDVI_{footprint} - NDVI_{target}}{NDVI_{target}}$$
(9)

式中, j代表单个像元, $J_1 和 J_2$ 为通量足迹和像元 尺度内的所有像元, $\psi_j 和 NDVI_j 分别为 j$ 像元处的 足迹权重和 NDVI。基于 NDVI_{target}和 NDVI_{footprint}之间 建立的线性回归关系,进一步定量化评估了站点 尺度的足迹-遥感像元尺度间的代表性:

 $NDVI_{target} \sim \beta_0 + \beta_1 \times NDVI_{footprint}$ (10)

式中, β_0 和 β_1 分别代表线性回归的截距和斜率,并 计算其线性回归决定系数(R^2)。与相关的研究保 持一致(Chu等,2021;Göckede等,2008),本 文通量足迹像元尺度空间代表性分为高、中和低 代表性,其分类标准见表2。其中,对于与植被类 型相关的空间代表性,当两个指标分别满足高和 低空间代表性的标准时,以低空间代表性为准。 例如,当 $P_{footprint}$ >80%而 P_{target} <50%时,该站点对植 被类型表现为低空间代表性。

	表 2 通重正迹像兀尺度空间代表性分尖
Table 2	Spatial representativeness classification of flux footprint at pixel scale

穴间代主州	植被类	型参数	植被密度参数					
空间代衣住	植被类型参数 植被类型参数 P _{footprint} P _{target} 高 >80% 中 50%—80% 低 <50%	R^2	$oldsymbol{eta}_0$	$oldsymbol{eta}_1$				
吉同	>80%	>80%	≥0.80	0.0±0.1	1.0±0.1			
中	50%—80%	50%—80%	0.60-0.80	—	—			
低	<50%	<50%	< 0.60	—	_			

3.2.2 通量足迹空间代表性时序变化分析

为了探讨像元尺度通量足迹空间代表性在不同时期的阶段性变化,本文将一年分为4个阶段 (1-3月、4-6月、7-9月和10-12月)分别进 行统计分析,同时对月尺度和日尺度通量足迹的 差异进行评估。由于风速风向会影响通量足迹的 范围,我们首先分析观测塔风速风向在不同时期 的阶段性变化,统计4个阶段内半小时风速风向的 分布情况。随后基于所有获得的单时次(半小时) 特征指数(最长足迹距离和足迹对称指数),进一 步解析不同时期内足迹特征指数(白天、夜间和 全天)的分布情况。同时,基于日尺度和月尺度 的通量足迹分别计算月尺度和不同时期内的足迹 时序重叠指数,用以表现通量足迹在不同月份和 不同阶段间的时序变化。其次,利用年尺度通量 足迹评估植被类型异质性对空间代表性的影响。 最后,基于时序NDVI数据分析王朗站像元尺度上 足迹和固定区域内植被密度的空间代表性差异。

4 结果与分析

4.1 不同时期观测塔风速风向变化

王朗站内不同观测塔在不同时期风向风速的

分布如图2所示。从整体看,在年内大部分时间, 王朗站内的风速相对稳定,3个观测塔平均风速 均<3 m/s。灌丛站、阔叶林站和针叶林站的平均风 速分别为1.08±0.67 m/s、1.18±1.00 m/s 和2.28± 1.32 m/s。灌丛站的最大风速为4.83 m/s,出现在 冬季。阔叶林站和针叶林站的最大风速均出现在 春季,分别为6.76 m/s和9.15 m/s。

2020年间,3个观测塔的风向在不同时期均呈 现出阶段性变化。灌丛站、阔叶林站和针叶林站 风向分别主要集中在33.76°—146.25°(NE—SE, 59.27%),78.76°—123.75°(E—ESE,39.17%)和 33.76°—78.75°(NE—ENE,58.54%)方向。灌丛 站在1—3月和4—6月的风向集中在123.76°— 146.25°(SE,16.22%和14.07%)方向,7—9月主 要在56.26°—78.75°(ENE,13.86%),10—12月 则集中在101.26°—123.75°(ESE,18.29%)方向。 阔叶林站1—3月、4—6月和7—9月的风向均集中 在101.26°—123.75°(ESE,23.78%、27.43%和 26.39%)方向,其10—12月主要风向分别在 78.76°—101.25°(E,21.23%)和101.26°—123.75° (ESE,19.86%)上。针叶林站1—3月的风向主要集 中在56.26°—78.75°(ENE,32.12%)和236.26°— 258.75°(WSW, 27.09%)方向。4—6月、7—9月 和10—12月则在33.76°—78.75°(NE—ENE)方向 上频率最大,分别为54.48%、66.06%和62.91%。

4.2 通量足迹阶段性特征

图 3 展示了月尺度上 3 个观测塔白天和夜间的 通量足迹分布。王朗站内 3 个观测塔月尺度的通量 足迹存在着明显差异,其空间范围跨越多个数量 级 (10—10³ m)。灌丛站和阔叶林站在月尺度的通 量足迹相对较小,分别在 100 m 和 350 m 范围内。 针叶林站的通量足迹较大,可跨度至 2500 m。从 整体看,3 个观测塔白天的通量足迹相对于夜间通 常更小。灌丛站的通量足迹在一年内相对稳定, 而阔叶林站和针叶林站的通量足迹在不同月份间 存在着明显波动。

图3 观测塔月尺度昼夜通量足迹的分布

Fig. 3 Spatial distribution of daytime and nighttime footprint across flux towers at monthly scale

图4显示了3个观测塔单时次通量足迹(半小时)最长足迹距离在不同时期的差异。从总体看,不同站点间的最长足迹距离各不相同。灌丛站和阔叶林站的足迹距离跨度较小,而针叶林站的足迹距离变化更剧烈。灌丛站、阔叶林站和针叶林站年均最长足迹距离分别为86.90±35.85 m、256.63±140.29 m和1547.69±965.98 m。3个观测塔白天和夜间的最长足迹距离存在差距,其年均值的差值由大到小依次为针叶林站(63.80 m)>灌丛站(19.24 m)>阔叶林站(6.45 m)。每个观测塔在不同

时期内的最长足迹距离也各不相同。灌丛站1— 3月(25.32%和28.41%)和4—6月(28.38%和 21.86%)白天和夜间的最长足迹集中于60—80m, 7—9月(29.25%和21.62%)则集中于80—100m。 其10—12月白天最长足迹主要在80—100m (33.19%),而夜间则在60—80m(25.19%)。阔叶 林站4个时期夜间的通量足迹均集中在120— 160m,所占比例分别为14.85%、15.87%、17.88% 和15.77%。针叶林站在不同时期的最长足迹距离 分布则较为均匀。

图 4 成例培取民产题距离频率分和图 Fig. 4 Frequency distribution diagrams of footprint fetch across flux towers

如图5所示,每个观测塔的足迹对称性同样存 在着明显的阶段性差异。灌丛站、阔叶林站和针 叶林站年均足迹对称指数分别为0.27±0.09、0.22± 0.10和0.12±0.08。3个观测塔白天和夜间年均足迹 对称指数的差值由大到小依次为灌丛站(0.06)>阔 叶林站(0.04)>针叶林站(0.01)。从不同时期 看,灌丛站1—3月夜间的通量足迹更匀称,其足 迹对称指数集中于0.4—0.5(17.63%),而10—12月 白天的通量足迹对称性较低,其对称指数主要在 0.1—0.2(58.86%)。阔叶林站夜间的足迹在7—9月 对称性更佳,而针叶林站白天和夜间的通量足迹 在不同时期的对称性通常都较低(<0.2)。

2640

图 5 观测塔足迹对称指数频率分布图

Fig. 5 Frequency distribution diagrams of footprint symmetry indices across flux towers

如图6所示,3个观测塔在日尺度上的足迹重 叠存在明显差异。从整体看,3个观测塔白天、夜 间和全天足迹的时序重叠程度各不相同,其时序 重叠指数分别为0.42±0.21、0.20±0.17和0.48± 0.17。3个观测塔的通量足迹在昼夜间具有较好的 重叠性,其昼一夜间时序重叠指数为0.79±0.04。 对于不同站点,阔叶林站白天足迹的重叠性在 4月、10月和12月相对较好,时序重叠指数分别为 0.63、0.67和0.62, 阔叶林站在6—8月重叠性较好 (0.62±0.02), 而针叶林站在9月的重叠性较好 (0.60)。对于夜间通量足迹,灌丛站在9月时序重 叠性较好(0.59), 阔叶林站在5月重叠性相对更 好(0.45), 而针叶林站在9月表现出较好的重叠 性(0.58)。此外, 3个观测塔通量足迹在不同时 期都表现出较好的阶段性重叠(表3), 其阶段性 重叠指数和阶段性的昼夜间重叠指数都>0.83。

monthly scale										
		足迹时序重叠指数								
站点	时段	ß	阶段性重叠指数							
		白天	夜间	白天+夜间	重叠指数					
	1—3月	0.97	0.96	0.97	0.83					
	4—6月	0.97	0.97	0.97	0.84					
灌丛站	7—9月	0.96	0.91	0.94	0.85					
	10—12月	0.97	0.95	0.96	0.84					
	1—12月	0.90	0.87	0.91	0.84					
	1—3月	0.95	0.93	0.95	0.89					
	4—6月	0.97	0.96	0.97	0.85					
阔叶林站	7—9月	0.98	0.92	0.97	0.88					
	10—12月	0.97	0.96	0.97	0.90					
	1—12月	0.93	0.89	0.94	0.88					
	1—3月	0.94	0.96	0.95	0.96					
	4—6月	0.97	0.95	0.97	0.93					
针叶林站	7—9月	0.96	0.91	0.95	0.96					
	10—12月	0.93	0.93	0.94	0.94					
	1—12月	0.89	0.87	0.90	0.95					

表 3 观测塔月尺度的时序重叠指数 Table 3 Footprint overlap indices across flux towers at

4.3 遥感像元尺度通量足迹空间代表性分析

表4显示了不同观测塔在多个遥感像元尺度上的植被类型空间代表性。3个观测塔观测的通量都由下垫面主要植被类型贡献(P_{footprin}≥92%)。不同观测塔在多个像元尺度对植被类型的空间代表性存在明显差异。灌丛站在30—250 m像元尺度表现出高空间代表性,阔叶林站在30—120 m尺度显示

出高空间代表性,而针叶林站在30—1000 m 像元 尺度表现出对植被类型的高空间代表性。灌丛站 和阔叶林站下垫面植被类型相对复杂,在低分辨 率像元尺度表现出较高的植被异质性, *P*_{target}分别在 10%—19%和17%—29%。针叶林站则在2000 m 像 元尺度仍表现出中等的植被类型空间代表性 (*P*_{target} = 61%)。

如图 7 所示, 王朗站 3 个观测塔 NDVI_{target}与 NDVI_{fotprint}间存在明显偏差。对于不同站点,灌丛 站在 30—250 m 像元尺度 NDVI 的相对偏差较小 (IMREI<0.04), 阔叶林站在 500 m尺度取得较小的 相对偏差(IMREI<0.02), 而针叶林站在 1000 m像 元尺度的相对偏差较小(IMREI<0.06)。此外, 针 叶林站白天和夜间 NDVI 的相对偏差存在明显差 异,其MRE 的差值最大可达 0.06。

如表5所示,王朗站内观测塔在整体上对植被 密度呈现出较好的空间代表性,所有站点在多个 遥感像元尺度都至少表现出中等空间代表性。对 于不同站点,灌丛站在30—120m像元尺度表现出 高空间代表性,阔叶林站在30—120m和500m像 元尺度表现出高空间代表性,而针叶林站在30— 2000m尺度上均表现出中等空间代表性。此外, 灌丛站和阔叶林站分别在30m和60m像元尺度上 的空间代表性最佳,而针叶林站在1500m像元尺 度时空间代表性最佳。灌丛站和阔叶林站白天和 夜间通量足迹对植被密度的空间代表性相似,而 针叶林站白天和夜间的空间代表性存在差异(线 性拟合斜率最大差值可达0.06)。

表 4 与植被类型异质性相关的空间代表性评估结果

	Table 4 Assessment	nent of spatial representativene	ess associated with heterogeneity	of vegetation types
л	伸 示日座/	灌丛站异质性参数	阔叶林站异质性参数	针叶林站异质性参数
又	涿儿尺渂/m -			

时段 像元尺度/m —	(単位				пал да	2 22	11-1-11-11-10-12-255			
则权	涿儿尺度/m	$P_{\rm footprint}$ /%	Description P targed 代表性 P footprint P targed P targed	$P_{ m target}/\%$	代表性	$P_{\rm footprint}$ /%	$P_{\rm target}/\%$	代表性		
	30	100	100	高	92	100	高	95	100	高
	60	100	100	高	92	100	高	95	100	高
	时段 像元尺度/m Proprint/% 30 100 60 100 120 100 250 100 500 100 100 100 100 100 100 100 100 100 100 100 100 100 2000 100 2000 100 2000 100 2000 100 2000 100 2000 100 2000 100 2000 100 2000 100 2000 100 2000 100 2000 100 2000 100 200 100	100	100	高	92	94	高	95	98	高
30 100 100 高 92 100 高 95 60 100 100 高 92 100 高 95 120 100 100 高 92 94 高 95 250 100 92 高 92 79 中 95 500 100 53 中 92 61 中 95 1000 100 19 低 92 29 低 95 1500 100 13 低 92 21 低 95 2000 100 10 低 92 17 低 95 30 100 100 高 93 100 高 92	99	高								
	500	100	53	中	92	61	中	95	98	高
	1000	100	19	低	92	29	低	95	92	高
	1500	100	13	低	92	21	低	95	77	中
	2000	100	10	低	92	17	低	95	61	中
	30	100	100	高	93	100	高	92	100	高
कोन	60	100	100	高	93	100	高	92	P _{footprint} /% P _{target} /% 代表性 95 100 高 95 100 高 95 98 高 95 99 高 95 99 高 95 92 高 95 92 高 95 61 中 92 100 高 92 98 高 92 98 高 92 99 高	
仪问	120	100	100	$P_{targel}/\%$ 代表性 $P_{tootprin}/\%$ $P_{targel}/\%$ 代表性 $P_{torgel}/\%$ 代表性 $P_{targel}/\%$ 代表性 100 高 92 100 高 95 100 高 100 高 92 100 高 95 100 高 100 高 92 100 高 95 100 高 100 高 92 94 高 95 98 高 92 高 92 79 中 95 99 高 53 中 92 61 中 95 98 高 19 低 92 29 低 95 92 高 13 低 92 21 低 95 77 中 10 低 92 17 低 95 61 中 100 高 93 100 高 92 100 高 <						
	250	100	92	高	93	79	中	92	99	高

										续表
п+ FЛ.	海二日 南/	灌丛站异质性参数			阔叶;	<	针叶林站异质性参数			
則投	像兀尺度/m	灌丛站异质性: P _{footprin} /% P _{targel} /% 100 53 100 19 100 13 100 100 100 100 100 100 100 100	代表性	$P_{\rm footprint}/\%$	$P_{\rm target}$ /%	代表性	$P_{\rm footprint}$ /%	$P_{\rm target} / \%$	代表性	
	500	100	53	中	93	61	中	92	98	盲
र्यन दिन	1000	100	19	低	93	29	低	92	92	南
攸间	1500	100	13	低	93	21	低	92	77	中
	2000	100	10	低	93	17	低	92	61	中
	30	100	100	高	92	100	高	94	100	高
	60	100	100	高	92	100	高	94	100	高
	120	100	100	高	92	94	高	94	98	南
卢王 , 龙阳	250	100	92	高	92	79	中	94	99	声同
日大+夜间	500	100	53	中	92	61	中	94	98	声同
	1000	100	19	低	92	29	低	94	92	声同
	1500	100	13	低	92	21	低	94	77	中
	2000	100	10	低	92	17	低	94	61	中

Fig. 7 Relationship between $NDVI_{target}$ and $NDVI_{footprint}$

		灌丛站异质性参数			阔叶林站异质性参数				针叶林站异质性参数				
时段	像兀尺度/m	β_0	β_1	R^2	代表性	β_0	β_1	R^2	代表性	$oldsymbol{eta}_0$	β_1	R^2	代表性
白王	30	0.01	1.00	0.99	声	-0.08	1.10	0.99	声同	0.30	0.72	0.77	中
	60	0.02	0.99	0.99	声	-0.07	1.08	0.99	声	0.27	0.74	0.76	中
	120	0.03	0.94	0.99	声	0.08	0.92	0.99	声同	0.16	0.83	0.82	中
	250	0.05	0.86	0.99	中	0.11	0.88	0.97	中	0.20	0.81	0.89	中
日人	500	0.11	0.78	0.97	中	0.06	0.91	0.95	声同	0.15	0.82	0.96	中
	1000	0.26	0.67	0.81	中	0.00	0.89	0.90	中	0.04	0.87	0.97	中
	1500	0.27	0.65	0.75	中	0.00	0.85	0.86	中	-0.01	0.89	0.95	中
	2000	0.23	0.66	0.75	中	0.01	0.83	0.82	中	-0.06	0.88	0.92	中
	30	-0.01	1.01	0.99	高	-0.08	1.09	0.99	高	0.35	0.67	0.74	中
	60	0.01	1.00	0.99	高	-0.06	1.07	0.99	高	0.31	0.69	0.73	中
	120	0.02	0.95	0.99	盲	0.08	0.92	0.99	高	0.22	0.77	0.78	中
>	250	0.05	0.87	0.99	中	0.11	0.87	0.97	中	0.25	0.76	0.86	中
仪问	500	0.11	0.78	0.95	中	0.06	0.90	0.94	高	0.19	0.77	0.94	中
	1000	0.26	0.66	0.78	中	0.01	0.88	0.89	中	0.09	0.82	0.94	中
	1500	0.27	0.64	0.71	中	0.01	0.84	0.85	中	0.04	0.83	0.93	中
	2000	0.23	0.65	0.71	中	0.02	0.82	0.80	中	-0.01	0.83	0.90	中
	30	0.00	1.01	0.99	高	-0.08	1.10	0.99	高	0.32	0.69	0.75	中
	60	0.01	0.99	0.99	高	-0.06	1.07	0.99	高	0.29	0.72	0.75	中
	120	0.03	0.94	0.99	高	0.08	0.92	0.99	高	0.19	0.80	0.81	中
白毛」方问	250	0.05	0.86	0.99	中	0.11	0.87	0.97	中	0.22	0.79	0.88	中
口人于汉问	500	0.11	0.78	0.96	中	0.06	0.90	0.95	高	0.17	0.80	0.96	中
	1000	0.26	0.67	0.79	中	0.00	0.88	0.90	中	0.06	0.85	0.96	中
	1500	0.27	0.65	0.73	中	0.01	0.85	0.85	中	0.01	0.86	0.95	中
	2000	0.23	0.65	0.73	中	0.01	0.83	0.81	中	-0.04	0.86	0.91	中

表 5 与植被密度异质性相关的空间代表性评估结果

Table 5 Assessment of spatial representativeness associated with heterogeneity of vegetation density

5 讨 论

站点涡度相关通量观测是研究大气与陆地生态系统间碳、水和能量等交换过程的传统方法(于贵瑞等,2004),但是其难以满足当前大区域 模拟研究的需求。近年来,利用卫星技术获取地 表信息受到研究者们的广泛关注,涌现出多种基 于遥感像元的地球系统模型和产品,在全球变化 领域有重要研究意义和应用价值(Jung等,2011; Piao等,2009)。受观测条件和运算空间的限制, 大部分通量数据产品通常集中在低或中等空间分 辨率(Barman等,2014;Mueller等,2011;Zheng 等,2020)。在地表异质性的影响下(尤其在山 区),基于遥感像元尺度的模型应用以及通量产品 检验将受到极大影响(Liang等,2014;吴小丹等, 2015;张圆等,2020)。中、低空间分辨率的遥感 像元通常包含多类地物混合,而站点尺度通量观测往往仅代表一种植被类型,植被异质性将给模型评估和产品验证带来误差(Chen等,2012)。此外,由于站点观测与通量产品像元空间尺度的不匹配,受到地表空间异质性的影响,直接将产品与站点数据对比将造成验证结果的不确定性(徐保东,2018)。因此,评估遥感像元尺度上通量足迹的空间代表性变得至关重要。本文以中国典型西南山地生态系统—王朗站的3个涡度相关塔为例,解析涡度相关观测与遥感像元间的空间代表性问题。

在通量足迹的空间变化上,研究发现王朗站内 不同观测塔通量足迹的最长距离各不相同(10— 10³ m),且通量足迹的对称性通常在40%以下(图4 和图5)。当前大多数模型评估以及通量数据产品 的生产都选取通量塔中心范围内一定区域作为通 量观测的贡献源区(如通量塔中心500 m和1 km

范围),以此来匹配遥感观测等数据的空间尺度 (Chen等, 2012; Zhou等, 2016)。这种方法选取 的通量贡献源区极其规则且固定(即假设对称性 为1),将不可避免的导致站点通量数据空间代表 性的偏差。Chu等(2021)研究 AmeriFlux 站点通 量足迹的代表性,发现不同站点的通量足迹范围 跨越多个数量级(10³—10⁷ m²)且足迹对称性集中 在40%-60%,并建议在点(塔)尺度模拟、基于 遥感的模型及尺度扩展等研究中考虑通量观测的 足迹特征。Ran等(2016)研究了将站点数据尺度 上推至像元尺度时站点通量观测的空间代表性及 不确定性,研究表明不考虑足迹代表性可使像元 尺度的 GPP 高估 25%。Zheng 等(2018) 指出光能 利用率模型在模拟 500 m 和 1000 m 像元尺度 GPP 时产生5%的空间分布偏差,同时造成11.2%的时 序变化差异。从王朗站的研究结果看,山区观测 塔的通量足迹范围跨度较大且对称性较低,因此 在山地生态系统进行站点观测尺度扩展、遥感模 型及产品验证时需要更加关注通量足迹的空间代 表性差异。

在通量足迹的时序变化上,研究发现不同时 期内的通量足迹分布存在显著差别。日尺度上的 足迹重叠性表现出明显的时序变化(0%-88%, 图 6),而月尺度上的差异较小(>83%,表3)。 Chu 等 (2021) 研究发现 214 个 AmeriFlux 站点 (涵盖一般生态系统类型)的月尺度通量足迹重叠 性为0.04-0.99。相比于通量足迹的空间变化, 王 朗站3个观测塔的时序重叠性较好,特别是月尺度 上。然而,由于3个观测塔均位于山谷或山谷两侧 的山坡上, 受山谷风影响其在不同时期风速风向 存在明显变化,尤其是日尺度。由于风向、观测 高度和大气状态等因素的影响,单时次(如半小 时)通量足迹的时空变化较为明显 (Schmid, 2002)。目前通常将一段时间(如日、月和年等) 内多个单时次通量足迹进行聚合,可以平滑单时 次通量足迹模拟的不确定性(Chu等, 2021),同 时匹配遥感数据的时间尺度(Chen等, 2009, 2012)。对于不同的时间尺度,月尺度通量足迹相 对于日尺度通常更为平滑。对于王朗站的3个观测 塔,其日尺度通量足迹更易受山谷风的影响,造 成日尺度通量足迹重叠性在不同月份存在较大差 异。因此,针对高时间分辨率的模型运行和产品 生产尺度,遥感像元尺度上站点通量观测的时序 空间代表性问题也是影响模型验证和产品生产的 重要因素之一(Kong等, 2022)。本文建议在日尺 度的通量数据评估和模拟中,有必要结合相应时 段的足迹特征以更好的表征通量数据的时序变化。

考虑到通量足迹的时序变化,本文进一步评 估了多个遥感像元尺度上通量观测的空间代表性。 研究发现王朗站内3个观测塔对植被类型和植被密 度的代表性存在差别,且在多个遥感像元尺度上 植被类型的空间代表性变化更大。针叶林站白天 和夜间的通量足迹在多个遥感像元尺度的空间代 表性存在明显差异(表5)。通量观测高度、风速 风向等是影响通量足迹范围分布的敏感性因子 (Chu等, 2021; 孙赛钰等, 2021)。通量足迹会随 着观测高度增加而增大(Burba和Anderson, 2010)。 同时,由于夜间大气条件较稳定,使得夜间的通 量足迹通常更大且变化更剧烈(Kim等, 2018)。 对于观测高度较高的站点(如本文中的针叶林站, 75 m),其白天和夜间的通量足迹范围相对较大从 而产生更大的绝对差异(图3和图4)。针叶林站 位于山谷中(图1),其昼夜间风向的变化也会造 成通量足迹的差异。白天和夜间通量足迹范围的 较大差异将对其在多个像元尺度的空间代表性造 成显著影响(Chu等, 2021; Kim等, 2018)。综 合考虑通量足迹对植被类型和植被密度的空间代 表性, 灌丛和阔叶林观测塔空间代表性最佳像元 尺度分别是30m和60m, 而针叶林观测塔空间代表 性最佳像元尺度是1000 m (表4和表5)。王朗站 3个涡度塔的观测高度存在明显差异(分别为10, 30和75m)。观测高度、站点所处位置地形和下垫 面植被的异质性将导致通量观测及其足迹范围的 差异,进而影响其在遥感像元尺度上的空间代表 性。由于上诉因素的影响,中、低高度的山区站 点通量观测在高空间分辨率像元尺度上表现出高 空间代表性(如10、30m观测高度), 而较高观测 塔在中低空间分辨率像元尺度的空间代表性较好 (如75m观测高度)。同时,针叶林站NDVI_{tareet}与 NDVI_{footnint}在多个像元尺度表现出较高的一致性; 而灌丛站和阔叶林站在低空间分辨率像元尺度则 存在 NDVI_{footprint} 较低时 NDVI_{target} 偏高, NDVI_{footprint} 较 高时NDVI_{target}偏低的情况(图7)。王朗站3个涡度 相关塔观测的通量均由站点主要植被类型贡献 (P_{fottrint}≥92%, 表4)。针叶林站下垫面植被类型较 为一致,在多个像元尺度都表现出对植被类型的 高空间代表性(表4)。灌丛站和阔叶林站下垫面 植被类型异质性较高,在低空间分辨率像元尺度 将包含大量的常绿针叶林等植被类型(图1(b))。 在非生长季,落叶阔叶灌丛和落叶阔叶林的NDVI 较低,常绿针叶林等植被的NDVI较高,造成足迹 范围内的NDVI_{footprint}较低时中低空间分辨率遥感像 元尺度的NDVI_{footprint}较低时中低空间分辨率通感像 元尺度的NDVI^jarget</sub>偏高;而在生长季,不同类型植 被的NDVI均较高,对于中低空间分辨率的遥感像 元,在山地易受高海拔山区雨雪覆盖的影响,使 得NDVI_{footprint}较高时NDVI_{target}偏低。因此,在山区开 展基于遥感的通量产品生产和模型验证时需要尤 其关注通量足迹的时空变化。

尺度效应是地球科学和定量遥感中的重要研 究课题(李小文, 2015; 李小文和王祎婷, 2013), 山区地表的高空间异质性使山地生态系统的尺度 效应更加明显。近年来,陆地"星一空一地"多 尺度观测试验及其网络建设已成为对地观测领域 的科学前沿(李德仁, 2012),可为地表参数遥感 估算中的尺度转换研究提供基础。涡度相关技术 可检测大气与陆地生态系统间碳、水和能量等通 量的交换过程,是地面观测的重要组成。受限于通 量观测足迹的空间范围,在山区开展"星一空一 地"多尺度综合观测,首先需要解析山地站点通 量足迹在不同遥感像元尺度上的空间代表性。在 此基础上,结合时空尺度扩展建模,以更好的模 拟和表征山地生态系统物质能量的循环过程,促 进山区遥感通量产品的生产和验证(李爱农等, 2016a, 2016b; 于文涛, 2021)。例如, Brunsell等 (2008) 对地表蒸散发在不同空间尺度的过程及其 相关影响因子进行评估,发现辐射温度是影响潜 热通量空间变异的最主要因子。Li等(2008)研 究发现遥感数据空间分辨率对通量观测解译存在 显著影响, 迫切需要适用于异质性地表的地球系 统模型和高空间分辨率遥感影像。王朗站研究结 果表明,山区通量观测的高空间代表性局限于高 空间分辨率(观测高度较低时)和中低空间分辨 率(观测高度较高时)的像元尺度。因此,在山 地生态系统"星一空一地"多尺度观测的实际应 用中, 表征通量足迹在遥感像元尺度的空间代表 性尤为重要。本文指出,认知通量足迹在像元尺 度上的空间代表性,结合多尺度遥感观测数据和 时空尺度扩展方法,可促进山区生态系统参量估 算和通量研究。

6 结 论

科学系统的评估遥感像元尺度上通量足迹的 空间代表性对于遥感通量产品建模、验证和生产 尤为重要,本文以中国典型西南山地生态系统— 王朗站的3个涡度相关塔为例(落叶阔叶灌丛、落 叶阔叶林和常绿针叶林),解析涡度相关观测与像 元间的空间代表性问题。主要结论如下:

(1)在通量足迹的空间变化上,王朗站内不同观测塔通量足迹的范围跨度较大(10—10³ m) 且对称性较低(通常在40%以下),因此在山地生态系统进行遥感模型及产品验证时需要更加关注 通量足迹空间代表性的差异。

(2) 在通量足迹的时序变化上, 王朗站日尺 度通量足迹重叠性表现出明显的时序差异(0%— 88%), 而月尺度上的差异较小(>83%)。因此, 针对高时间分辨率的模型运行和产品生产尺度 (如日尺度), 有必要结合相应时段的足迹特征以 捕捉通量数据的时序变化。

(3)由于风向和观测高度等因素的影响,通 量足迹在多个像元尺度呈现出不同的空间代表性。 以王朗站内3个观测塔为例,灌丛站、阔叶林站和 针叶林站分别在30m、60m和1000m像元尺度取 得对通量足迹的最佳空间代表性。由于山区通量 观测的高空间代表性局限于高空间分辨率(观测 高度较低时)和中低空间分辨率(观测高度较高 时)的遥感像元,认知通量足迹在像元尺度上的 空间代表性,结合多尺度遥感观测数据和时空尺 度扩展方法,可促进山区生态系统参量估算和通 量研究。

参考文献(References)

- Baldocchi D D. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4): 479-492 [DOI: 10.1046/j.1365-2486.2003.00629.x]
- Barman R, Jain A K and Liang M L. 2014. Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis. Global Change Biology, 20(5): 1394-1411 [DOI: 10.1111/gcb.12474]
- Brunsell N A, Ham J M and Owensby C E. 2008. Assessing the multiresolution information content of remotely sensed variables and elevation for evapotranspiration in a tall-grass prairie environment. Remote Sensing of Environment, 112(6): 2977-2987 [DOI:

10.1016/j.rse.2008.02.002]

- Burba G and Anderson D. 2010. A Brief Practical Guide to Eddy Covariance Flux Measurements: Principles and Workflow Examples for Scientific and Industrial Applications. Lincoln: Li-Cor Biosciences
- Chen B Z, Black T A, Coops N C, Hilker T, Trofymow J A and Morgenstern K. 2009. Assessing tower flux footprint climatology and scaling between remotely sensed and eddy covariance measurements. Boundary-Layer Meteorology, 130(2): 137-167 [DOI: 10. 1007/s10546-008-9339-1]
- Chen B Z, Coops N C, Fu D J, Margolis H A, Amiro B D, Barr A G, Black T A, Arain M A, Bourque C P A, Flanagan L B, Lafleur P M, McCaughey J H and Wofsy S C. 2011. Assessing eddy-covariance flux tower location bias across the Fluxnet-Canada Research Network based on remote sensing and footprint modelling. Agricultural and Forest Meteorology, 151(1): 87-100 [DOI: 10.1016/j. agrformet.2010.09.005]
- Chen B Z, Coops N C, Fu D J, Margolis H A, Amiro B D, Black T A, Arain M A, Barr A G, Bourque C P A, Flanagan L B, Lafleur P M, McCaughey J H and Wofsy S C. 2012. Characterizing spatial representativeness of flux tower eddy-covariance measurements across the Canadian Carbon Program Network using remote sensing and footprint analysis. Remote Sensing of Environment, 124: 742-755 [DOI: 10.1016/j.rse.2012.06.007]
- Chu H S, Luo X Z, Ouyang Z T, Chan W S, Dengel S, Biraud S C, Torn M S, Metzger S, Kumar J, Arain M A, Arkebauer T J, Baldocchi D, Bernacchi C, Billesbach D, Black T A, Blanken P D, Bohrer G, Bracho R, Brown S, Brunsell N A, Chen J Q, Chen X Y, Clark K, Desai A R, Duman T, Durden D, Fares S, Forbrich I, Gamon J A, Gough C M, Griffis T, Helbig M, Hollinger D, Humphreys E, Ikawa H, Iwata H, Ju Y, Knowles J F, Knox S H, Kobayashi H, Kolb T, Law B, Lee X H, Litvak M, Liu H P, Munger J W, Noormets A, Novick K, Oberbauer S F, Oechel W, Oikawa P, Papuga S A, Pendall E, Prajapati P, Prueger J, Quinton W L, Richardson A D, Russell E S, Scott R L, Starr G, Staebler R, Stoy P C, Stuart-Haëntjens E, Sonnentag O, Sullivan R C, Suyker A, Ueyama M, Vargas R, Wood J D and Zona D. 2021. Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 301-302: 108350 [DOI: 10.1016/j.agrformet.2021.108350]
- Dolman A J, Noilhan J, Durand P, Sarrat C, Brut A, Piguet B, Butet A, Jarosz N, Brunet Y, Loustau D, Lamaud E, Tolk L, Ronda R, Miglietta F, Gioli B, Magliulo V, Esposito M, Gerbig C, Körner S, Glademard P, Ramonet M, Ciais P, Neininger B, Hutjes R W A, Elbers J A, Macatangay R, Schrems O, Pérez-Landa G, Sanz M J, Scholz Y, Facon G, Ceschia E and Beziat P. 2006. The carboeurope regional experiment strategy. Bulletin of the American Meteorological Society, 87(10): 1367-1380 [DOI: 10.1175/bams-87-10-1367]
- Durden D J, Metzger S, Chu H S, Collier N, Davis K J, Desai A R, Kumar J, Wieder W R, Xu M and Hoffman F M. 2020. Automated integration of continental-scale observations in near-real time for simulation and analysis of biosphere – atmosphere interactions//

Nichols J, Verastegui B, Maccabe A, Hernandez O, Parete-Koon S and Ahearn T, eds. Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI. Cham: Springer: 204-225 [DOI: 10.1007/978-3-030-63393-6_14]

- Göckede M, Foken T, Aubinet M, Aurela M, Banza J, Bernhofer C, Bonnefond J M, Brunet Y, Carrara A, Clement R, Dellwik E, Elbers J, Eugster W, Fuhrer J, Granier A, Grünwald T, Heinesch B, Janssens I A, Knohl A, Koeble R, Laurila T, Longdoz B, Manca G, Marek M, Markkanen T, Mateus J, Matteucci G, Mauder M, Migliavacca M, Minerbi S, Moncrieff J, Montagnani L, Moors E, Ourcival J M, Papale D, Pereira J, Pilegaard K, Pita G, Rambal S, Rebmann C, Rodrigues A, Rotenberg E, Sanz M J, Sedlak P, Seufert G, Siebicke L, Soussana J F, Valentini R, Vesala T, Verbeeck H and Yakir D. 2008. Quality control of CarboEurope flux data - part 1: coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences, 5(2): 433-450 [DOI: 10.5194/bg-5-433-2008]
- Hargrove W W, Hoffman F M and Law B E. 2003. New analysis reveals representativeness of the AmeriFlux network. Eos, Transactions American Geophysical Union, 84(48): 529-535 [DOI: 10. 1029/2003eo480001]
- Heidbach K, Schmid H P and Mauder M. 2017. Experimental evaluation of flux footprint models. Agricultural and Forest Meteorology, 246: 142-153 [DOI: 10.1016/j.agrformet.2017.06.008]
- Hsieh C I, Katul G and Chi T W. 2000. An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Advances in Water Resources, 23(7): 765-772 [DOI: 10.1016/S0309-1708(99)00042-1]
- Jung M, Reichstein M, Margolis H A, Cescatti A, Richardson A D, Arain M A, Arneth A, Bernhofer C, Bonal D, Chen J Q, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law B E, Lindroth A, Merbold L, Montagnani L, Moors E J, Papale D, Sottocornola M, Vaccari F and Williams C. 2011. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research: Biogeosciences, 116(G3): G00J07 [DOI: 10.1029/2010jg001566]
- Jung M, Schwalm C, Migliavacca M, Walther S, Camps-Valls G, Koirala S, Anthoni P, Besnard S, Bodesheim P, Carvalhais N, Chevallier F, Gans F, Goll D S, Haverd V, Köhler P, Ichii K, Jain A K, Liu J Z, Lombardozzi D, Nabel J E M S, Nelson J A, O'Sullivan M, Pallandt M, Papale D, Peters W, Pongratz J, Rödenbeck C, Sitch S, Tramontana G, Walker A, Weber U and Reichstein M. 2020. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 17(5): 1343-1365 [DOI: 10.5194/bg-17-1343-2020]
- Kim J, Hwang T, Schaaf C L, Kljun N and Munger J W. 2018. Seasonal variation of source contributions to eddy-covariance CO₂ measurements in a mixed hardwood-conifer forest. Agricultural and Forest Meteorology, 253-254: 71-83 [DOI: 10.1016/j.agrformet. 2018.02.004]
- Kljun N, Calanca P, Rotach M W and Schmid H P. 2015. A simple two-

dimensional parameterisation for Flux Footprint Prediction (FFP). Geoscientific Model Development, 8(11): 3695-3713 [DOI: 10. 5194/gmd-8-3695-2015]

- Kong J W N, Ryu Y, Liu J G, Dechant B, Rey-Sanchez C, Shortt R, Szutu D, Verfaillie J, Houborg R and Baldocchi D D. 2022. Matching high resolution satellite data and flux tower footprints improves their agreement in photosynthesis estimates. Agricultural and Forest Meteorology, 316: 108878 [DOI: 10.1016/j.agrformet. 2022.108878]
- Kormann R and Meixner F X. 2001. An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorology, 99(2): 207-224 [DOI: 10.1023/A:1018991015119]
- Li A N, Bian J H, Zhang Z J, Zhao W and Yin G F. 2016a. Progresses, opportunities, and challenges of mountain remote sensing research. Journal of Remote Sensing (in Chinese), 20(5): 1199-1215 (李爱农,边金虎,张正健,赵伟,尹高飞. 2016a. 山地遥感主要 研究进展、发展机遇与挑战. 遥感学报, 20(5): 1199-1215) [DOI: 10.11834/jrs.20166227]
- Li A N, Yin G F, Jin H A, Bian J H and Zhao W. 2016b. Principles and methods for the retrieval of biophysical variables in mountainous areas. Remote Sensing Technology and Applications, 31(1): 1-11 (李爱农, 尹高飞, 靳华安, 边金虎, 赵伟. 2016b. 山地地表生态 参量遥感反演的理论、方法与问题. 遥感技术与应用, 31(1): 1-11) [DOI: 10.11873/j.issn.1004-0323.2016.1.0001]
- Li A N, Yin G F, Zhang Z J, Tan J B, Nan X, Ma K P and Guo Q H. 2018. Space-air-field integrated biodiversity monitoring based on experimental station. Biodiversity Science, 26(8): 819-827 (李爱 农, 尹高飞, 张正健, 谭剑波, 南希, 马克平, 郭庆华. 2018. 基于 站点的生物多样性星空地一体化遥感监测. 生物多样性, 26 (8): 819-827) [DOI: 10.17520/biods.2018052]
- Li D R. 2012. On space-air-ground integrated earth observation network. Journal of Geo-Information Science, 14(4): 419-425 (李德 仁. 2012. 论空天地一体化对地观测网络. 地球信息科学学报, 14(4): 419-425) [DOI: 10.3724/SP.J.1047.2012.00419]
- Li F Q, Kustas W P, Anderson M C, Prueger J H and Scott R L. 2008. Effect of remote sensing spatial resolution on interpreting towerbased flux observations. Remote Sensing of Environment, 112(2): 337-349 [DOI: 10.1016/j.rse.2006.11.032]
- Li X W. 2005. Retrospect, prospect and innovation in quantitative remote sensing. Journal of Henan University (Nature Science), 35 (4): 49-56 (李小文. 2005. 定量遥感的发展与创新. 河南大学学 报(自然科学版), 35(4): 49-56) [DOI: 10.15991/j. cnki. 411100. 2005.04.012]
- Li X W and Wang W T. 2013. Prospects on future developments of quantitative remote sensing. Acta Geographica Sinica, 68(9): 1163-1169 (李小文, 王祎婷. 2013. 定量遥感尺度效应刍议. 地 理学报, 68(9): 1163-1169) [DOI: 10.11821/dlxb201309001]
- Liang S, Zhang X, Xiao Z, Cheng J, Liu Q and Zhao X. 2014. Introduction//Liang S L, Zhang X T, Xiao Z Q, Cheng J, Liu Q and Zhao X, eds. Global Land Surface Satellite (GLASS) Products: Algorithms, Validation and Analysis. Cham: Springer: 1-2 [DOI: 10.1007/978-3-319-02588-9_1]

- Liu J, Chen J M, Cihlar J and Park W M. 1997. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment, 62(2): 158-175 [DOI: 10.1016/ s0034-4257(97)00089-8]
- Metzger S. 2018. Surface-atmosphere exchange in a box: making the control volume a suitable representation for in-situ observations. Agricultural and Forest Meteorology, 255: 68-80 [DOI: 10.1016/j. agrformet.2017.08.037]
- Mizoguchi Y, Miyata A, Ohtani Y, Hirata R and Yuta S. 2009. A review of tower flux observation sites in Asia. Journal of Forest Research, 14(1): 1-9 [DOI: 10.1007/s10310-008-0101-9]
- Mueller B, Seneviratne S I, Jimenez C, Corti T, Hirschi M, Balsamo G, Ciais P, Dirmeyer P, Fisher J B, Guo Z, Jung M, Maignan F, McCabe M F, Reichle R, Reichstein M, Rodell M, Sheffield J, Teuling A J, Wang K, Wood E F and Zhang Y. 2011. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophysical Research Letters, 38(6): L06402 [DOI: 10.1029/2010gl046230]
- Nappo C J, Caneill J Y, Furman R W, Gifford F A, Kaimal J C, Kramer M L, Lockhart T J, Pendergast M M, Pielke R A, Randerson D and Shreffler J H. 1982. Workshop on the representativeness of meteorological observations, June 1981, Boulder, Colo. Bulletin of the American Meteorological Society, 63(7): 761-764
- Novick K A, Biederman J A, Desai A R, Litvak M E, Moore D J P, Scott R L and Torn M S. 2018. The AmeriFlux network: a coalition of the willing. Agricultural and Forest Meteorology, 249: 444-456 [DOI: 10.1016/j.agrformet.2017.10.009]
- Piao S, Fang J Y, Ciais P, Peylin P, Huang Y, Sitch S and Wang T. 2009. The carbon balance of terrestrial ecosystems in China. Nature, 458(7241): 1009-1013 [DOI: 10.1038/nature07944]
- Ran Y H, Li X, Sun R, Kljun N, Zhang L, Wang X F and Zhu G F. 2016. Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale. Agricultural and Forest Meteorology, 230-231: 114-127 [DOI: 10.1016/j.agrformet.2016.05.008]
- Ricciuto D, Sargsyan K and Thornton P. 2018. The impact of parametric uncertainties on biogeochemistry in the E3SM land model. Journal of Advances in Modeling Earth Systems, 10(2): 297-319 [DOI: 10.1002/2017ms000962]
- Running S W and Hunt E R. 1993. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models//Scaling Physiological Processes: Leaf to Globe. Amsterdam: Elsevier: 141-158 [DOI: 10.1016/ b978-0-12-233440-5.50014-2]
- Schmid H P. 1997. Experimental design for flux measurements: matching scales of observations and fluxes. Agricultural and Forest Meteorology, 87(2/3): 179-200 [DOI: 10.1016/s0168-1923(97)00011-7]
- Schmid H P. 2002. Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agricultural and Forest Meteorology, 113(1/4): 159-183 [DOI: 10.1016/S0168-1923(02) 00107-7]
- Shuang X, Liu S M, Xu Z W and Wang W Z. 2009. Investigation of

spatial representativeness for surface flux measurements in the Heihe River Basin. Advances in Earth Science, 24(7): 724-733 (双 喜, 刘绍民, 徐自为, 王维真. 2009. 黑河流域观测通量的空间代 表性研究. 地球科学进展, 24(7): 724-733)

- Sims D A, Rahman A F, Cordova V D, El-Masri B Z, Baldocchi D D, Bolstad P V, Flanagan L B, Goldstein A H, Hollinger D Y, Misson L, Monson R K, Oechel W C, Schmid H P, Wofsy S C and Xu L K. 2008. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sensing of Environment, 112(4): 1633-1646 [DOI: 10.1016/j. rse. 2007. 08.004]
- Sulkava M, Luyssaert S, Zaehle S and Papale D. 2011. Assessing and improving the representativeness of monitoring networks: the European flux tower network example. Journal of Geophysical Research-Biogeosciences, 116: G00J04 [DOI: 10.1029/2010jg001562]
- Sun S Y, Wang W Z and Xu F N. 2021. Comparison of Footprint Models of Surface Heat and Water Vapor Fluxes in the Middle and-Upper Reaches of Heihe River Basin. Remote Sensing Technology and Application, 36(4): 887-897 (孙赛钰, 王维真, 徐菲楠. 2021. 黑河流域中上游水热通量足迹模型的对比分析. 遥感技术与应用, 36(4): 887-897) [DOI: 10.11873/j.issn.1004-0323.2021.4.0887]
- Verma M, Friedl M A, Law B E, Bonal D, Kiely G, Black T A, Wohlfahrt G, Moors E J, Montagnani L, Marcolla B, Toscano P, Varlagin A, Roupsard O, Cescatti A, Arain M A and D'Odorico P. 2015. Improving the performance of remote sensing models for capturing intra- and inter-annual variations in daily GPP: an analysis using global FLUXNET tower data. Agricultural and Forest Meteorology, 214-215: 416-429 [DOI: 10.1016/j.agrformet.2015.09.005]
- Villarreal S and Vargas R. 2021. Representativeness of FLUXNET Sites across Latin America. Journal of Geophysical Research-Biogeosciences, 126(3): e2020JG006090 [DOI: 10.1029/2020jg006090]
- Wang S Q, Chen D C, Zhou L, He H L, Shi H, Yan H M and Su W. 2013. Assessing the spatial representativeness of eddy covariance flux observation stations of terrestrial ecosystems in China. Acta Ecologica Sinica, 33(24): 7715-7728 (王绍强, 陈蝶聪, 周蕾, 何 洪林, 石浩, 闫慧敏, 苏文. 2013. 中国陆地生态系统通量观测站 点空间代表性. 生态学报, 33(24): 7715-7728) [DOI: 10.5846/ stxb201208291219]
- Wang W Z, Xu Z W, Liu S M, Li X, Ma M G and Wang J M. 2009. The characteristics of heat and water vapor fluxes over different surfaces in the heihe river basin. Advances in Earth Science, 24 (7): 714-723 (王维真, 徐自为, 刘绍民, 李新, 马明国, 王介民. 2009. 黑河流域不同下垫面水热通量特征分析. 地球科学进展, 24(7): 714-723)
- Wu C Y, Chen J M and Huang N. 2011. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: evaluation and calibration. Remote Sensing of Environment, 115(12): 3424-3435 [DOI: 10.1016/j.rse.2011.08.006]
- Wu X D, Wen J G, Xiao Q, Li X, Liu Q, Tang Y, Dou B C, Peng J J, You D Q and Li X W. 2015. Advances in validation methods for remote sensing products of land surface parameters. Journal of

Remote Sensing (in Chinese), 19(1): 75-92 (吴小丹, 闻建光, 肖 青, 李新, 刘强, 唐勇, 窦宝成, 彭菁菁, 游冬琴, 李小文. 2015. 关 键陆表参数遥感产品真实性检验方法研究进展. 遥感学报, 19 (1): 75-92) [DOI: 10.11834/jrs.20154009]

- Wu X J, He H L, Zhang L, Feng L L, Ren X L, Liu W H, Zou C X and Lin N F. 2022. Spatial sampling design optimization of monitoring network for terrestrial ecosystem in China. Science of the Total Environment, 847: 157397 [DOI: 10.1016/j. scitotenv. 2022. 157397]
- Xie X Y and Li A N. 2020. Development of a topographic-corrected temperature and greenness model (TG) for improving GPP estimation over mountainous areas. Agricultural and Forest Meteorology, 295: 108193 [DOI: 10.1016/j.agrformet.2020.108193]
- Xie X Y, Li A N, Jin H A, Bian J H, Zhang Z J and Nan X. 2021. Comparing three remotely sensed approaches for simulating gross primary productivity over mountainous watersheds: a case study in the Wanglang National Nature Reserve, China. Remote Sensing, 13(18): 3567 [DOI: 10.3390/rs13183567]
- Xu B D. 2018. Leaf Area Index Retrieval and Product Validation over Heterogeneous Land Surfaces. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences) (徐保东. 2018. 非均质地 表叶面积指数反演及产品真实性检验. 北京: 中国科学院大学 (中国科学院遥感与数字地球研究所))
- Yu G R, Fu Y L, Sun X M, Wen X F and Zhang L M. 2006. Research progress and development ideas of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX). Science in China Ser. D Earth Sciences, 36(S1): 1-21 (于贵瑞, 伏玉玲, 孙晓 敏, 温学发, 张雷明. 2006. 中国陆地生态系统通量观测研究网 络(ChinaFLUX)的研究进展及其发展思路. 中国科学 D辑 地球 科学, 36(S1): 1-21) [DOI: 10.1360/zd2006-36-S1-1]
- Yu G R, Zhang L M, Sun X M, Li Z Q and Fu Y L. 2004. Research progress on terrestrial ecosystem carbon fluxes monitoring in Asia. Science in China Ser. D Earth Sciences, 34(S2): 15-29 (于贵 瑞,张雷明,孙晓敏,李正泉,伏玉玲. 2004. 亚洲区域陆地生态 系统碳通量观测研究进展. 中国科学 D 辑 地球科学, 34(S2): 15-29) [DOI: 10.1360/zd2004-34-S2-15]
- Yu W T. 2021. Spatial-temporal Continuous Vegetation Parameter Inversion Methodology over Complex Surface Based on Remote Sensing. Beijing: University of Chinese Academy of Sciences (Aerospace Information Innovation Research Institute, Chinese Academy of Sciences) (于文涛. 2021. 复杂地表时空连续植被参 数遥感反演方法研究.北京: 中国科学院大学(中国科学院空天 信息创新研究院)) [DOI: 10.44231/d.cnki.gktxc.2021.000010]
- Zhang Y, Jia Z Z, Liu S M, Xu Z W, Xu T R, Yao Y J, Ma Y F, Song L S, Li X, Hu X, Wang Z Y, Guo Z X and Zhou J. 2020. Advances in validation of remotely sensed land surface evapotranspiration. Journal of Remote Sensing (in Chinese), 24(8): 975-999 (张圆, 贾 贞贞, 刘绍民, 徐自为, 徐同仁, 姚云军, 马燕飞, 宋立生, 李相, 胡骁, 王泽宇, 郭枝虾, 周纪. 2020. 遥感估算地表蒸散发真实 性检验研究进展. 遥感学报, 24(8): 975-999) [DOI: 10.11834/jrs. 20209099]

- Zheng Y, Shen R Q, Wang Y W, Li X Q, Liu S G, Liang S L, Chen J M, Ju W M, Zhang L and Yuan W P. 2020. Improved estimate of global gross primary production for reproducing its long-term variation, 1982-2017. Earth System Science Data, 12(4): 2725-2746 [DOI: 10.5194/essd-12-2725-2020]
- Zheng Y, Zhang L, Xiao J F, Yuan W P, Yan M, Li T and Zhang Z Q. 2018. Sources of uncertainty in gross primary productivity simulated by light use efficiency models: model structure, parameters, input data, and spatial resolution. Agricultural and Forest Meteorology, 263: 242-257 [DOI: 10.1016/j.agrformet.2018.08.003]
- Zhou Y L, Wu X C, Ju W M, Chen J M, Wang S Q, Wang H M, Yuan W P, Black T A, Jassal R, Ibrom A, Han S J, Yan J H, Margolis H, Roupsard O, Li Y N, Zhao F H, Kiely G, Starr G, Pavelka M, Montagnani L, Wohlfahrt G, D'Odorico P, Cook D, Arain M A, Bonal D, Beringer J, Blanken P D, Loubet B, Leclerc M Y, Matteucci G, Nagy Z, Olejnik J, Paw U K T and Varlagin A. 2016. Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites. Journal of Geophysical Research-Biogeosciences, 121(4): 1045-1072 [DOI: 10.1002/2014jg002876]

Spatial representativeness of flux footprints at pixel scales over mountainous ecosystems

WU Changlin, XIE Xinyao, LI Ainong

1. Research Center for Digital Mountain and Remote Sensing Application, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;

2. Wanglang Mountain Remote Sensing Field Observation and Research Station of Sichuan Province, Mianyang 621000, China

Abstract: With the availability of remote sensing images since the 1970s, the spatial-temporal continuum observations of the land surface can be obtained at the global scale. In this manner, remote sensing is an important information source for the large-scale estimation of land surface carbon, water, and energy fluxes. Global eddy covariance flux datasets are widely used to evaluate and produce remote sensing flux products. Given that tower-based fluxes can only represent the small areas around the tower, a mismatch usually occurs between the towerbased fluxes and multiscale pixels of remote sensing. Thus, the spatial representativeness of flux footprints must be evaluated at multiscale pixels. In this study, we choose the Wanglang Mountain Remote Sensing Field Observation and Research Station of Sichuan Province, a typical mountainous ecosystem of Southwest China, as the study area. This study used a two-dimensional parametric footprint model (flux footprint prediction, FFP) to characterize the spatiotemporal variations and analyze the spatial representativeness of flux footprints at multiscale pixels (i.e., 30, 60, 120, 250, 500, 1000, 1500, and 2000 m). In this work, the land cover types and normalized difference vegetation index were used to characterize the spatial representativeness of footprint among vegetation types and vegetation density at multiscale pixels, respectively. At the same time, two site-level simple representativeness indices for land cover type and vegetation density were proposed to evaluate the footprint-to-pixel representativeness across flux towers at Wanglang station. Results showed that the footprint fetch varied across flux towers at Wanglang station (10-10³ m), and the footprints at multiple temporal resolutions had a low symmetry (usually less than 40%). For the temporal variations of footprints, the overlap of footprints had evident changes at the daily scale (0%-88%), and the variations were reduced at the monthly scale (usually larger than 83%). As for the three flux towers around Wanglang station, results showed that the station of deciduous broadleaf shrub (with observed height at 10 m), deciduous broadleaf forest (with observed height at 30 m), and evergreen needleleaf forest (with observed height at 75 m) had the optimal spatial representativeness at the pixel scales of 30, 60, and 1000 m, respectively. Moreover, compared with vegetation density, the discrepancies of spatial representativeness were more evident for vegetation cover. The spatial representativeness differences of footprints must be paid attention to while validating remote sensing models and producing flux datasets around mountainous ecosystems. Moreover, the corresponding footprints must be combined with tower-based observations to characterize the temporal variations of fluxes when modeling and producing flux products at high temporal resolution (e.g., daily scale). Given that the high spatial representativeness of footprints was limited to the pixels at high (a lower tower) and medium-low (a higher tower) spatial resolution, the estimation of ecosystem parameters and flux research over mountainous areas could be promoted by cognizing the spatial representativeness of footprint at pixel scales and combining the multiscale remote sensing observations with the spatial and temporal scaling method.

Key words: pixel, spatial representativeness, eddy covariance, flux footprint model, mountainous ecosystem

Supported by National Key Research and Development Program of China (No. 2020YFA0608702); National Natural Science Foundation of China (No. 42201418); Postdoctoral Science Foundation of China (No. 2021M700139); Chinese Academy of Sciences "Special Research Assistant" Program; Chinese Academy of Sciences Youth Innovation Promotion Associationss