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An algorithm for retrieval albedo from BRDF archetype
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Abstract: A priori knowledge plays an important role in the retrieval of surface albedo from satellite observations. Here a BRDF
archetype database is built according to Anisotropic Flat Index (AFX) which can identify surface reflectance anisotropy. Then a
method to derive land surface albedo from spare observations and BRDF archetype is presented. Albedos from all the observations
and full inversion method are used to validate the albedo estimation from our method. Compared results show that when the obser—
vations that have view zenith angles less than 40° are not on the cross—principle plane can only represent part of reflectance anisotro—
py. Compared with full inversion method the maximum absolute error of BRDF archetype inversion method is 0. 036 and the rela—
tive error is improved about 5% —10% . For those observations are located on the cross—principle plane the largest absolute differ—
ence of full inversion method is up to 0. 18 due to the insufficient and spare angular samples. However the BRDF archetype inver—
sion method appears more accurate. In sum BRDF archetype inversion method constrains BRDF shape over the entire space and

was less dependent on the distribution of the observations. It was also less sensitive to noise. For the multi-angle data that have in—

sufficient information BRDF archetype method is preferred than full inversion method.
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1 INTRODUCTION

Anisotropic character is an inherent behavior of Land sur—
face reflectance and this property is usually characterized by the
( BRDF)
1977) . Surface albedo which can be pro—
duced through the integration of BRDF is defined as the ratio of

Bidirectional Reflectance Distribution Function

(Nicodemus et al.

the reflected solar ration to the total incoming solar radiation over
the whole solar spectrum(Dickinson 1983). It is the ability of
surface to reflect solar radiation and is also used as an input pa—
rameter for climate models and thus it is a primary controlling
1985). Access of
high accuracy of surface albedo has great significance to global

for the surface energy budget (Dickinson

climate change research.

The anisotropic characteristics of the surface should be ¢
onsidered when quantitative estimation of surface albedo and fea—
tures of vegetation and soil from surface direction reflectance (Li
& Wang 1995). The linear kernel driven BRDF model which
has the ability of integration and extrapolation is generally used in
correcting BRDF effects and in the retrieval of surface albedo

2000; Schaaf et al.

from multi-angle datasets (Lucht et al.

DOI: 10.11834/jrs. 20133022

2002; Strugnell & Lucht 2001). However the acquisition of a
ngular measurements from the sensor is limited by its scanning
configuration and the platform’s orbital characteristics. Moreover

cloud contamination reduces the number of observations and
makes the angular distribution hard to predict. Most multi-angle
samplings (e. g. MODIS) are accumulated during certain period
based on an assumption that the BRDF character of the land s
2003;

2002). Sun zenith angle meteorological situa—

urface remains unchanged during this period (Jin et al.
Schaaf et al.
tion and surface conditions can cause great variance in directional
r eflectance. They have more obvious effect in high resolution r
emote sensing because high resolution sensors can only cover a
small region and they can not get enough samplings in a short
time. Moreover the kernel driven model has a strict set of rules
for the number and distribution of observations (Jin et al.
2003). All the factors mentioned above can limit the retrieval
accuracy of the surface albedo.

A priori knowledge can effectively solve the problem of i
nsufficient number of observations in the inversion of remote
sensing. In existing algorithms using a priori knowledge usually

assume that the same land surface has a similar BRDF shape
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and the optimal BRDF shape of the data can be got through fitting
the priori BRDF shape to observations (Strugnell & Lucht

2001). However there are also studies showed that the variabil—
ity of BRDF is higher within the class than between the class
(Bacour & Bréon 2005). This may be because BRDF is direct—
1985; 1992;

and different land covers may have the

ly related to vegetation structure (Li & Strahler
Strahler & Jupp 1990)
same structure. Moreover the degree of spatial heterogeneity
changes only slightly beyond 1 km resolution and the BRDF
shapes are similar (Bacour & Bréon 2005). Spatial heterogene—
ity characteristics will increase when pixel size is reduced and
BRDF shape will change obviously with the variance of vegetation
2011).

The present study first uses kernel driven BRDF model
(RossThick-.iSpareR) (Wanner et al. 1995) to fit surface
observation data and then establishes the BRDF archetype data—

structure (Roman et al.

base according to Anisotropic Flat Index (AFX) calculated from
model parameters. Then we introduce an algorithm for retrieval
albedo from insufficient observations using the BRDF archetypes.
Finally simulated data is used to analyze the accuracy of the re—
sult through comparing this method with MODIS albedo full in—
2000). The advantages of this

method and the sources of error are also discoursed.

version method (Lucht et al.

2 DATA AND ALGORITHM BASIS
2.1 Multi-angle data set

The major advantage of ground multi-angular observation is
the ability to acquire various directional reflectance of the same
feature in a short time which may be helpful for land surface r
eflectance anisotropy. The 73 sets of field observations used in
this study contained a large number of plant covers for instance
soil grass shrub broadleaf crops and forests. Most of the data
sets are collected on the ground and used in many studies
(Kimes 1983 1986; Ranson 1985; Deering 1986; 1992;
1999; Trons 1992; Vierling 1997). There are also some air—
borne P OLDER data sets (Leroy & Breon 1996) and Scanning
Cloud Absorption Radiometer (SCAR) observations (Tsay et
al. 1998). These datasets are acquired in the red and near in—
frared bands most of which are used for validating the models”
2001; Hu et al. 1997). Detail

information of each data can refer to Huang (2013).

fitting capability (Li et al.

2.2 Algorithm theoretical basis

2.2.1 Kernel driven BRDF model

Land surface reflectance anisotropy has been widely accept—

ed and directional reflectance can be described according to a

function of the sun and the view angle. Kernel driven BRDF

model which is a linear combination of some base kernels is

generally used to the retrieval of surface albedo. For n

on-Lambert pixels directional reflectance can be divided into a

linear combination of isotropic scattering volume scattering and

geometrical optics scattering (Lucht et al. 2000; Roujean et
al. 1992; Wanner et al. 1995).

R(O; 0, ¢) =fi,(A) +fa(V)K,(0: 6, @) +
Juew (M) K, (0: 6, ) M

where R is the surface bidirectional reflectance and K, repre—

sents the volume scattering kernel caused by a horizontal layer of

randomly distribution leaves and K, represent the s urface scat—

tering kernel caused by shadows of ;atural objects. They are the
functions of viewing and illumination geometry; 6, 6, and ¢ are
the solar zenith view zenith and relative azimuth angles respec—
tively; fi,(X)  f.u(A)  f.. (1) are the spectrally dependent
BRDF kernel weights or parameters.

MODIS full inversion method uses the linear regression to fit
observations and retrieves the best model parameters. During the
retrieval of albedo from observations a constraint method is con—
sidered to avoid negative non-physical BRDF parameters (Jin et
al.  2003). The value of kernel integration has nothing to do
with model parameter and can be calculated in advance. Black
Sky Albedo (BSA) and White Sky Albedo (WSA) can be re-
trieved through the linear combination of multiple values of model
parameters and kernel volume (Lucht et al. 2000). Actual al-
bedo is a value interpolated between WSA and BSA on the d
1994). A large n

umber of studies showed that when the observations can represent

iffuse skylight fraction (Lewis & Barnsley

the surface anisotropy the full inversion results performed con—
sistently with field observations (Jin et al. 2003; Liu et al.
2009; Schaaf et al. 2002).

The RossThick and LiSparse-Reciprocal (RTLSR) kernels
(Wanner et al. 1995) are used in this research. Their BRDF

shapes on the principle plane at different view zenith angles are

shown in Fig. 1. The RossThick kernel presents a typical bowl-
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Fig. 1 The BRDF shape on the principle plane at different sun zenith angle
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shaped BRDF curve where reflectance near nadir is lower than for
larger scattering angle with the minimum usually displaced to—
wards the forward scattering direction while the reciprocal L
iSparse kernel presents dome-shaped BRDF curve with prominent
peak reflectance (hotspot) in retro-solar direction. Actual BRDF
shapes are combined by these two basic shapes so it is fair to
believe that the actual BRDF will exhibit bowl or dome shape

character on some degree.

2.2.2 Anisotropic Flat indeX (AFX)

AFX has a formula derived from the kernel-driven BRDF
model (Eq. (2)) and is especially appropriate for the descrip—
tion of the MODIS anisotropic reflectance. It is defined as the ra—
tio of WSA to the isotropic parameter f;

iso

©))

The value of AFX depends on the band A. Based on the
RTLSR BRDF model we derive the AFX as Eq. (3):

S (A) )
AFX =1 +—7— x0.189184 — ==
Jiw(A) Jiw(A)
where constant 0. 189184 and 1.377622 are the bi-hemispherical

integral of the RossThick kernel and reciprocal LiSparse kernel

x 1.377622  (3)

respectively.

From Eq. (3) we can see that AFX is a linear combination
of the volumetric parameter and geometric-optical parameter n
ormalized by isotropic parameter and weighted by bi-hemispher—
ical integral value of the RossThick kernel and the LiSparse-Re—
ciprocal kernel respectively. AFX varies as the g eometric-optical
and volumetric parameters. If the volumetric scattering effect is
greater than the geometric-optical effect then an AFX >1 is ex—
pected; if the geometric-optical effect is greater than volumetric
effect an AFX <1 is expected; otherwise an AFX=1 is availa—
ble. The level of the surface reflectance depends on the band.
Bare land is the typical soil background land cover type and
they have a similar level of reflectance in the red and near-infra—
red bands. However for the dense vegetation there are signifi—
cant reflectance gaps between those two bands. The reflectance
level of grass and shrub land is between those two land covers.
The original BRDF (gray line in Fig.2) retrieved from observa—
tions contains the anisotropic information as well as the spectral
these BRDF shapes do not

present distinctly regular variability and are hard to use in re—

information of land surface thus

search. This spectral reflectance difference is r emoved by nor—
malizing the BRDF shapes by multiplying through a scale factor K
= a/f,,(Jiao et al.

limit the range of the adjusted shapes and « is equal to 0.5 in

2012). Here a is an adjustment factor to

this research to force most shapes into 0—1. 0. The normalize
process only transforms the isotropic parameters into the same
level so that the BRDF of different land cover can be compared
directly. However anisotropic feature does not change during
this process. Fig. 2 shows the principle plane BRDF shapes of
three typical land covers. Gray lines represent the origin BRDF
shape and dark line represents the BRDF shape after normali—
zing. The AFX value of the rough bail soil is 0. 73

that geometrical optics scattering is greater than volume scatter—

suggesting

ing and the BRDF shape performs as a dome shape. The dense
wheat has an AFX of 1.24 and volume scattering is greater than

geometrical optics scattering. At this point  BRDF shape perform
as a bowl shape. As to the flat salt land the AFX is 1.01 and
the BRDF shape is more smoother.
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Fig.2 BRDF shapes on principle for three typical

land covers in the red band

2.2.3 Extract BRDF archetype from multi-angle datasets

The preceding analysis suggests that AFX has good ability in
indicating the scattering form. Taking AFX as an indicator of
BRDF character we can establish a BRDF archetype (each
BRDF shape represents non—epetition BRDF shape in a particu—
lar band so the shape is called the BRDF archetype) which
can present the change of BRDF and can help the application of
BRDF as a priori knowledge. To extract BRDF archetype the
kernel driven BRDF model is used to fitting field observations
first to get model parameters and AFX. Then lterative Self Or—
ganizing Data Analysis Techniques Algorithm (ISODATA) meth-
od is used to classify the AFX and the mean values of each class
are used as BRDF archetypes parameters. Finally the spectral
normalizing is performed and here we normalize the isotropic pa—
rameter to 0. 5.

To determine the optimal number of the BRDF archetype
we classified those data sets into two to nine classes. We used
each BRDF archetype fitting the data within the class and calcu—
lated the fitting error of each data. Study shows that with the i
ncrease of the number of class the mean value and standard d
eviation of the fitting error are gradually reduced. When the
number of archetype is greater than four there are no obvious
changes in fitting error which kept at 0. 018 and 0. 04 level in
the red and near-infrared bands. Considering the complexity of
the algorithm and the accuracy of the results finally the BRDF
a rchetype database with four BRDF shapes is built in the two
bands respectively. More details about the establishing of BRDF
types can refer to Jiao et al. (2012). Table 1 lists the before
(/) and after normalize (F) model parameters as well as the
AFX values. The BRDF shape on the principle is shown in Fig.
3 and the left is red band and right is the nearinfrared band.
The shapes from bottom to top are corresponding to R1 to R4 or N1
to N4 respectively. From Table 1 and Fig.3 we can see that with
the 1 ncrease of AFX the normalized volume scattering parameter
gradually increased and geometrical scattering parameter gradually
decreased suggesting that the role of geometrical scattering gradual—
ly weakened while volume scattering effect gradually increased and

the BRDF shape transformed from dome shape to bowl shape.
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Tablel 1 Model parameter and AFX value of each BRDF archetype
Class AFX, Sfiw Sl S F., F., F,.,
R1 0.6714 0.2040 0. 0690 0.0552 0.5 0.1724 0.1429
R2 0.8916 0.1341 0.0338 0.0160 0.5 0. 1868 0. 0650
Red bands

R3 1.0060 0.0899 0.0571 0.0079 0.5 0.3875 0.0511
R4 1.2412 0.0391 0.0526 0.0010 0.5 0.7097 0.0099
N1 0.6855 0.3713 0.1023 0.0995 0.5 0.1508 0.1349
Near infrared N2 0.9202 0.2857 0.1021 0.0311 0.5 0.2048 0.0571
bands N3 1. 0460 0.3168 0. 1855 0.0149 0.5 0.3097 0.0258
N4 1.1808 0.3390 0.3261 0. 0006 0.5 0.4881 0.0014
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ig.3  BRDF archetype shapes on the principle plane in the red

and near infrared bands at the 30° sun zenith angle

3 ARCHETYPE INVERSION METHOD AND
VALIDATION

3.1 Archetype inversion

BRDF Archetype effectively summarizes the surface reflec—
tance anisotropy and it can be used as a priori knowledge for the
retrieval of albedo from multi-angle observations. Using those
BRDF archetypes fitting the observations respectively the best
BRDF archetype which has the smallest RMSE
mined. This is the basic idea of the study. Consider a set of n
BRF multi-angular measurements B: B =p, (2.,;92,,) p
(2::2. ) p.i (2,32, ,_,). The archetypical BRDF
of the observation is assumed as BRDF . BRFs from archetypical
BRDF can be retrieved through the RTLSR model in the forward
model B : B = P(; (2,;02,) P{ (2.,;02,) - Péfl

can be deter—

(2,,.,:82 ,_). We then find the adjustment value a that mini—
mizes the difference between B and aB using the technical of

e 2 .
least-mean squares. We minimized an error term e” given by

(Strugnell & Lucht 2001) :

é = 2(p —ap))’ “@)

it follows that

n-1

D0 %Xp;
a =5 )
> )’
then the BRDF can be calculil:t(;d
BRDF = a x BRDF (6)

and the fitting error can be write as

n-1

1 ,
RMSE = ﬁz (o —ap.)’ @)
k=0

Using those four BRDF archetypes fitting the observations
respectively RMSE of each BRDF archetype can be calculated
and the BRDF arcehtype which has the smallest RMSE was s
elected as a priori knowledge of the data. Through the Eq. (5)
the adjustment @ can be calculated. BSA and WSA of the data
can be computed from prior BSA" and WSA :

BSA(0 A) =a xBSA(0 A) =ax D F,(AM)h() (8)
WSA(A) = a x WSA“(A) = a x 2 (F.(A)H) ©))

where h, (@) and H, are the directional-hemispherical and bi—
hemispherical integrals of the BRDF model kernels and they do
not depend on the observations and may be pre-computed and
stored. Constant 0. 189184 and 1. 377622 are the bi-hemispherical
integral of the RossThick kernel and reciprocal LiSparse kernel.

3.2 Method validation

The surface reflectance anisotropic character is more obvious
on the principle plane while it performed smooth on the cross—
principle plane (Li & Strahler 1992). From Fig. 2 and Fig. 3
we also can see when the AFX value is large or small than a u
nit the reflectance on the principle plane will change obviously
with view zenith angle. There is a “hot spot” in the back forward
direction and a “dark spot” in the forward direction. The re-
flectance also changed largely at large view zenith angles. Moreo—
ver the effect of surface reflectance anisotropic on reflectivity al-
so connects to the amount of the spectrum. In Fig.2 the wheat
has an AFX of 1.24 and has more volume scattering b ehavior

but its spectrum level only ranged from 0. 05 to 0. 1. After the
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normalizing the reflectance varied from 0.3 to 0.75 1 ndicating
that when the reflectance anisotropic is similar the large the
spectrum the more diversity will be caused by the r eflectance
anisotropic. Seeing from the different direction on the cross-prin—
ciple plane the proportion of the shadow area is relatively sta—
ble so the BRDF shape is relatively smooth and there is no dra—
matic changes.

To evaluate the accuracy of our algorithm the observations
in each datasets that have a view zenith angle less than 40° and
distribute on the principle cross-principle 30° or 60° plane are
selected as new validation data sets. Both the full inversion meth—
od and archetype method were used to fitting the validation data.
The results are compared with the standard result which is re—
tried from the full inversion method and all observations. The
number of observations of each validation data ranged from 4 to
12. All of those observations in one data have the similar sun
zenith angle. The observation datasets are obtained under several
sun zenith angles so more than one validation dataset may be
yield from one observation datasets. Those validation data meet
the MODIS back up requirement (Jin et al. 2013) and canr
epresent the observations that lack of sampling information.

Comparing the WSA from the validation data sets using a
rchetype inversion and full inversion method with the standard
value the scatter plots are shown in Fig.4 and the accuracy of
result are given in Table 2. Compared results showed that: (1)
When the observations are not on the cross principle plane the
lowest coefficient of determination between standard value and
WSA from archetype inversion is 0. 944 in the red band while
the highest coefficient of determination between standard value
and WSA from full inversion is 0. 927. The largest relative errors
of those two methods are 17. 14% and 27. 63% obtained in 60
degree plane. The archetype method can improve the results by
about 5% —10% . The near-infrared band has a similar result
and it has a 3% —8% improvement. (2) When the observations
are on the cross—principle plane the coefficient of determination
of the two bands between standard value and WSA from archetype
method is 0.36 and the largest relative error is as high as to 0.
18. However the results of archetype inversion are more credi-
ble and the largest absolute and relative errors are 0.037 and 1
3.52% respectively. (3) The full inversion method failed (al—
bedo greater than 1 or less than 0) for 17 and 26 validation data—
sets in red and near-infrared bands. Open circle and triangle in
Fig. 4 represent the data sets that failed or the absolute error with
the standard value greater than 0. 1. However results of a
rchetype inversion method are all acceptable. To sum up under
the condition of insufficient of multi-angular observations informa—
tion the accuracy of archetype information is higher than full in—
version method and this behavior is more obvious when the ob-
servations are on the cross—principle plane.

The full inversion method relied on kernel driven model and
has a strict limit on the distribution of sampling and the noise in
2003 ; Shuai 2008). A

rchetype inversion method which is based on the full inversion

observations (Jin et al. et al.
method can restrict BRDF in whole space using a priori knowl-
edge. The validation data sets used in this study have the sun
zenith angle less than 40° and they lack observations in large

view zenith angles. When the selected observations are on the

principle plane they can represent the surface reflectance aniso—
tropic on some degree. However the anisotropic on cross—princi—
ple plane is limited so the observations on this plane are not that
representative. So  when observations locate on the principle
plane full inversion and archetype inversion methods can get
better results and archetype inversion method performed even
better. With the sampling plane moving away from the principle
plane (from principle plane to 30° 60° and cross—principle
plane) the accuracy of full inversion dropped obviously and e-
ven failed but the accuracy of archetype inversion method kept
stable. It shows that the archetype inversion method can be used
to illposed data sets and can get stable results. It should be not—
ed that on the 60 degree plane the archetype inversion accura—
cy is slight lower and this may be caused by the representation
of the observations and also may be decided by the number of the
data sets. There are only 57 data sets are used in this group and
other three groups had more than 100 sets. Generally multi-an—
gle observations like the validation data in this study may not
have enough directional information but the archetype inversion
method  which using BRDF archetype as a priori knowledge can
describe anisotropic and albedo more accurately. This advantage
is more significant when the date has a poor sampling.

In order to explain the advantage of archetype inversion
method in poor sampling data sets more clearly we selected four
data sets which had observations located on different planes for
analysis. The observations and BRDF shapes of the four data sets
on the principle plane with different methods are shown in Fig. 5.
Table 3 shows the results of WSA and the absolute error with the
standard value. It can be seen that when the observations can r
epresent part of the surface anisotropy both of the method can
get an accurate result (Fig. 5(a)). Due to the poor sampling
and noise in observations archetype inversion performed a little
better than full inversion. However when there are obvious noi-
ses and lack observations on the hot spot full inversion method
will become less stable (Fig. 5(b)). When the observations are
on the cross—principle observations are not representative and
there are no observations in the large zenith angle and the re—
sults will become unreliable and even fail (Fig.5(a)(b)). Arche-
type 1 nversion method introduce a priori knowledge and constraint
the BRDF in the entire spatial. This method has a weak dependence
on the observation samples and good at undermining the noise and
thus can retrieve accurate albedo. At present a large number of
sensors” multi-angle sampling ability is limited and the archetype in—

version method may have a broad application prospects.

Table 2 The accuracy of archetype inversion method

Bands Plane RMSE1 RMSE2 &, 1% &, 1%
pp 0.02325 0.01217 21.630 11.906
Red 30P 0.02272 0.01834 17.483 12. 681
60P 0.02382 0.01862 27.631 17.135
CpP 0. 18281 0.02173 99.306 13.515
pp 0. 04667 0.03325 13.791 9.440
Nir 30P 0.05007 0.03555 13.287 10.227
60P 0.05733 0.03100 18.574 10.872
CP 0. 18469 0.03692 46.921 9.760

Note: RMSE1 RMSEl &, and RMSE2 &, represent the absolute error and
the relative error between full inversion result or archetype inversion results and
standard results. PP 30P 60p and CP are represent principle plane 30°  60°

and (tr()ss—primtiple plan(-',.
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Table 3 White sky albedo and inversion accuracy of
validation datasets in Fig. 5

WSA, WSA, WSA, D, D,
PPI 0.23157 0.19388 0.22671 0.0377 0. 0049
PP2 0. 28360 0.37039 0.25294 0.0868 0.0307
cpl 0.41742 0.70213 0.39599 0.2847 0.0214
cP2 0.29094 0.21124 0.27212 0.0797 0.0188

Note: WSA, is the standard vaule of WSA. WSA, is full inversion result.
WSA, is archetype inversion result. D, D, represent the absolute error between

WSA, and WSA, and between WSA, and WSA,.

4 CONCLUSION

This study built BRDF archetype database according to field
multi-angular data sets and AFX which can indicate the s urface
reflectance anisotropy. We outlined an algorithm for the deriva—
tion of land surface albedo from poor sampling multi-a ngular ob—
servations and explored the potential accuracy of such a tech—
nique using simulate validation data sets. This study p rovided a
new way for the application of a priori knowledge and has a great
significant role for those ill posed multi-angle data sets. The con—
clusions are as below.

(1) AFX has the ability to indicate the variance of BRDF
and with the increase of AFX the volume scattering effect gradu—
ally increased and geometric scattering effect gradually weak—
ened. The archetype which is established from field observa-
tions and AFX can effectively summarize the surface reflectance
a nisotropy. It provides a new way for the extract and use of a

priori knowledge.

(2) A priori knowledge can effectively solve the problem of
insufficient number of observation in remote sensing. The advan—
tage of the archetype inversion method is that it is able to ¢
onstraint the BRDF in the whole spatial space and use the maxi—
Thus
albedo even for the data that has ill posed problem.

(3) Comparing the archetype method with the full inversion

method when there is limited number of observations and has ill

mum information of the observations. this method can get

posed problems the former has much higher accuracy and more
stable results. It is independent on the number of the observa—
tions the distribution of the view and the quality of the observa—
archetype inversion

tions. Generally for the ill posed data

method can advance the accuracy by up to 3% —10%  especial-
ly for the data sets that have their observations on the cross-prin—
ciple plane.

The field multi-angle data sets used in this study were main—
and this may ignore the effect
the ob-
servation database should be expanded and recruited. In future

we will add POLDER datasets and MODIS BRDF product on EOS

core sites to renew the BRDF archetype. Moreover we will ana—

ly obtained in dormancy seasons
of seasons. To acquire more typically BRDF archetypes

lyze the application conditions including the effect of the vari—
ance of seasons the correlation of the BRDF a rchetype between

different bands.
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