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Spatial-time continuous changes simulation of crop growth parameters
with multi-source remote sensing data and crop growth model
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Abstract: Continuous simulation of crop growth parameters at spatial-time scale is a key technique for monitoring crop growth
status and precision agriculture. This paper realized the spatial-time scale continuous simulation of growth parameters with the
assimilation of remote sensing information into crop growth model, monitoring growth parameters changes on spatial-time scale.
Construct a model named WOPROSAIL with the coupling of crop growth model WOFOST and canopy radiative transfer model
Prospect+Sail (PROSAIL). Then particle swarm optimization (PSO) algorithm was used to minimize difference between ob-
served values of soil adjusted vegetation index (SAVI) derived from CCD data and simulated values of soil adjusted vegetation
index (SAVTI’) calculated by coupling model for optimizing initial parameters of WOFOST. Regionalization of parameters was
achieved with MODIS data retrieval, then by inputting these regional parameters, optimized WOFOST model, initial parameters
of which were optimized, was driven for each pixel and then regional growth parameters were calculated, achieving continuous
simulation of crop growth parameters on spatial-time scale. Finally, a region scale remote sensing-crop simulation assimilation
framework model named RS-WOPROSAIL was constructed. The results indicated that assimilation model solved the discontinu-
ity of spatial scale simulation by crop growth model and time scale retrieval by remote sensing information. Growth parameters
simulated by optimized crop growth model, including leaf area index (LAI), weight of storage organs (WSO) and total above
ground production (TAGP), preferably reflected the changes of rice growth status on spatial-time scale, and the relative error be-
tween simulation yield and actual measurements was 27.4%.

Key words: crop growth model, PROSAIL model, particle swarm optimization algorithm, assimilation, crop growth param-
eters, spatial-time scale continuous simulation
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1 INTRODUCTION

Crop growth model’s precision is high in simulating crop
growth parameters such as leaf area index (LAI), weight of stor-
age organs (WSO) and total above ground production (TAGP) on
field scale which represent crop growth status (Wu, et al., 2003;
Xie, et al., 2006), but when it is applied on region scale, some
initial input parameters are unavailable due to the variability on
region scale, limiting the application of crop growth model on
region scale (Liu, et al., 2003). Therefore, the assimilation of
remote sensing information into crop growth model becomes
an effective approach to the regionalization application of crop
growth model in recent years. On one hand, remote sensing
technique can improve the simulation precision of crop growth
model (Wang, et al., 2005). On the other hand, remote sensing

technique can obtain input parameters on region scale accurately
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in real time (Wang & Huang, 2002). So combining remote sens-
ing information with continuity on spatial scale and crop growth
model with continuity on time scale is expected to realize the ap-
plication of crop growth model on region scale, and accordingly
the objective of the spatial-time scale continuous simulation of
crop growth status can be achieved (Wit & Diepen, 2007).

At present, main studies about the assimilation of remote
sensing technique and crop growth model include(1) adjusting some
processes or re-estimating initial condition to optimize crop model
with canopy state variable (LAI, LNA, et al.), which is acquired
by remote sensing retrieval (Clevers, 1997; Yan, et al., 2006,
Dente, et al., 2008; Zhu, et al., 2010; Tan, et al., 2011); (2)cou-
pling crop growth model and canopy radiative transfer model
with canopy state variable (LAI), and adjusting some processes
or re-estimating initial condition to optimize crop model with
remote sensing radiative observed values (Supit, 1997; Guerif &
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Duke, 1998; Weiss, et al., 2001; Ma, et al., 2005). The first
method demands high precision in the retrieval of the crop pa-
rameters with remote sensing. Comparing remote sensing radia-
tive observed values with simulation ones by crop growth model,
the second one adjusts some processes or re-estimates initial
parameter(s), which does not introduce errors from the retrieval.
So it becomes the important research direction.

In this study, the first step is to couple the crop growth model WO-
FOST and the canopy radiative transfer model PROSPECT+SAIL
(PROSAIL). Second the particle swarm optimization algorithm (PSO)
is used to assimilate soil adjusted vegetation index (SAVI) (Huete,
1988) derived from CCD data into the PROSAIL model to re-esti-
mate some initial parameters of WOFOST for improving the simu-
lation accuracy of WOFOST. Regionalization of parameters such
as temperature (7) and photosynthetically active radiation (PAR) is
achieved via remote sensing retrieval, by inputting which optimized
WOFOST model was driven and then growth parameters were cal-
culated on region scale. Finally, the regional scale remote sensing-
crop simulation assimilation framework model (RS-WOPROSAIL)
is constructed and is driven to simulate rice growth parameters on
spatial-time scale continuously, providing reference for data mod-
eling and analysis on spatial-time scale.

2 EXPERIENT AREAS AND DATA

2.1 Experiment areas

The Experiment region is located in the city of Changchun,
Jinlin province (43°26'N—44°05'N, 125°03'E—125°34'E),
which is in the north-east Plain of China. The climate is a cold
temperate continental monsoon, abundant light and moderate
heat. The annual average air temperature is 4.9°C and the annual
average precipitation is 594 mm, which mostly occurs and up to
311 mm in July and August; the soil is black earth mainly, prop-
erty of which is fertile. The study region belongs to rice-growing
area of single precocity rice in the north-east. The kind of rice
is the series of Jilin japonica rice. In this study, four rice growth
areas (A, B, C, D) and a sample plot(125°09'E, 43°51'N) were
selected as study areas and sample plot respectively (Fig. 1).
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44°00'N | 44°0'0'N
43°50'0"N | 43°50'0"N
43°40'0"N | 43°40'0"N
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Fig. 1 Location map for study areas, sample plot and
corresponding CCD data

2.2 Data acquisition

Data needed in this study included remote sensing data, WO-

FOST data, PROSAIL model and in situ observed data of rice.

Remote sensing data mainly used in the study was CCD data
of the Environment and Disaster Reduction Small Satellites,
which has the characteristics of high spatial resolution (30 m), high
time resolution (four days) and large breadth (360 km or 720 km).
12 CCD data with good quality were selected from May to Sep-
tember in 2009 in this study, the time of which are 2009-05-20,
2009-06-20, 2009-06-25, 2009-07-08, 2009-07-19, 2009-07-29,
2009-08-04, 2009-08-12, 2009-08-30, 2009-09-04, 2009-09-10
and 2009-09-16, covering all growth periods of rice. With the
calibration coefficient of each band provided by China Centre for
Resources Satellite Data and Application, radiometric calibration
of CCD data was conducted, and then geometric rectification
with rectified TM image selected as base image and atmospheric
correction based on 6S model were also carried out. In addition,
three MODIS products such as MODO09 (the surface reflectance),
MODIS-NDVI and Land Surface Temperature (LST) were se-
lected for regionalization of parameters.

This study only performed the simulation of potential rice
growth process, the parameters of WOFOST Principally included
weather and crop parameters. And weather parameters included
solar radiation and air temperature (7). Because the location
of sample plot is close to that of Changchun weather station
(125°13'E, 43°54'N), the daily air temperature data of Chang-
chun in 2009 was selected as the air temperature data of sample
plot from Changchun weather station. The solar radiation Ry was
calculated by Eq. (1) (Doorenbos & Pruitt, 1977).

n
R =(a, +b, E)R" (1)

where a, and b, are empirical constants, the value of which are
0.25 and 0.5 respectively. n is the sunshine duration, acquired
from Changchun weather station. N is duration of possible sun-
shine and R, is extraterrestrial solarradiation.

Soil reflectance, contents of chlorophyll and dry mass as well
as water of leaf in main periods required by PROSAIL and the
crop growth parameters such as LAI, TAGP and WSO standing
for rice growth status were also measured in sample plot. 40 sets
of sample data were measured in every period, calculating the
average of the 40 sets as the observed values of sample plot in
each period.

3 ASSIMILATING OF REMOTE SENSING
INFORMATION INTO CROP GROWTH
MODEL

Construction of the assimilation framework was to construct a
model named WOPROSAIL by coupling the crop growth model
WOFOST under potential production level with the canopy ra-
diative transfer model PROSAIL through LAI. Particle swarm
optimization algorithm was used to minimize difference between
simulated values SAVI’ by coupling model and observed values
SAVI by CCD data for optimizing initial parameters. These vari-
ables include Day of Transplanting (IDTR) and temperature sum
from sowing to transplanting (TSUMST) of WOFOST, which
made simulated values close to observed ones. So the field scale
remote sensing-crop simulation assimilation model was estab-
lished; regionalization of parameters such as temperature (7)
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and photosynthetically active radiation (PAR) was finished via
MODIS data, by inputting which optimized WOFOST model was
driven and then growth parameters (LAI, WSO and TAGP) were
calculated for each pixel, and constructed a region scale remote
sensing-crop simulation assimilation framework model named
RS-WOPROSAIL. Finally, the study achieved continuous simu-
lation of crop growth parameters on spatial-time scale.

3.1 Coupling of crop growth model and canopy ra-
diative transfer model

The crop growth model WOFOST was used in this study, which
principally simulates the processes including crop development,
CO, assimilation, respiration, dry mass distribution, LAI increase
and soil water balance as well as transpiration (Boogaard, et al.,
1998). There are three simulation levels of crop growth: potential
production level (suitable water and nutrient), water-limited pro-
duction level (only rainfall) and nutrient-limited production level
(Nitrogen, phosphorus and potassium short supplied). This study
did research on the rice growth status under potential production
level. Under potential production level, WOFOST determines crop
development stage through calculating temperature SUM during
crop growth stage. When the daily temperature sum accumulates
to the total temperature sum needed for some development stage, it
means crop has grown to the stage. Considering coefficient of the
atmospheric transmission, direct and diffuse light, canopy reflect-
ance, scattering and absorbability and so on, WOFOST describes
the light interception of canopy, with which WOFOST calculates
the potential gross photosynthate. Part of photosynthate are used to
maintenance respiration and growth respiration, and the rest con-
verts into dry mass and are partitioned to roots, stems and leaves
as well as storage organs. The partition coefficients vary from one
development stage to another and the gross weight of each organ
is calculated by taking the integral of daily photosynthate. During
the crop development process, leaves are grouped according to leaf
age and age or dead with leaf age increasing, and influence the light
interception (Fig. 2).

PROSAIL model is in tegrated by PROSPECT and SAIL model.
PROSPECT is a leaf optical properties model based on “Slab model”
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(Jacquemoud & Baret, 1990). It gets the reflectance and transmittance
of leaf through simulating up and down radiant flux of leaf from 400
nm to 2500 nm. SAIL is a bidirectional canopy reflectance model
(Verhoef, 1985), which LALI is one of input parameters. When canopy
structure parameters and environment parameters are provided, SAIL
model can calculate the canopy reflectance no matter how high the sun
is and how the observation direction is oriented. PROSAIL model can
get canopy reflectance of vegetation through inputting the leaf reflect-
ance and transmittance simulated by PROSPECT into SAIL.

When physicochemical parameters of crop and weather pa-
rameters in the region are provided, WOPROSAIL could simulate
canopy reflectance of vegetation through inputting LAI simulated
by WOFOST into PROSAIL (Fig. 3). It comes true that the obten-
tion canopy reflectance of vegetation according to vegetation physi-
cochemical parameters and geometric parameters as well as weather
parameters. This establishes the foundation for adjusting simulation
processes or re-estimating initial parameters to optimize crop growth
model with remote sensing radiative observed values.

3.2 Choice of optimization parameters

Cold damage is the primary climate factor of affecting the pro-
duction of rice in Changchun, so the greenhouse are used to raise
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Fig. 3 WOPROSAIL coupling framework under potential production level
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seeding in this region to increase the count of TSUMST for keeping
rice grow in the right way. But TSUMST could not be acquired by
remote sensing retrieval or spatial interpolation. Furthermore, it is
very important for simulating the process of rice growth precisely.
In addition, because of its variability on regional scale, IDTR is also
unavailable on regional scale precisely.

With the sensitivity analysis, we tested impact of IDTR
and TSUMST on simulation results, which means testing the
changes in the percentages of simulation results (maximum LAI,
final WSO and TAGP) with TSUMST reduced 10% (or setting
IDTR ten days in advance or delay) when other parameters do
not change anything (Table 1). It showed that maximum LAI
reduced 11.39% and 10.57% respectively with setting IDTR ten
days delay or TSUMST reduced 10%, which will influence pho-
tosynthesis. At the same time, the change range of final WSO
and TAGP were also from 4.5% to 9.78% and from 6.1% to 9.09%
severally, meaning that IDTR and TSUMST have large influence
on crop development and biomass.

Table 1 Sensitivity analysis of IDTR and TSUMST 1%
IDTR
TSUMST reduced 10%
Advance(10 d) Delay(10 d)
maximum LAT 7.85 —-11.39 —-10.57
final WSO 4.58 -9.78 -8.42
final TAGP 6.1 -9.09 -8.18

From above, the study determined IDTR and TSUMST, which
are difficult to be acquired at regional scale precisely but have
evident influence on simulation results, as the initial parameters

to be optimized.

3.3 Regionalization of parameters

Considering the spatial non-homogeneity of surface condi-
tion, regionalization of parameters in the coupled model is re-
quired when a field scale model is applied on regional scale.

The model used in this study simulated rice growth under po-
tential crop production, so it was principally influenced by PAR and
T. To acquire space distribution of PAR, based on radiative transfer
equation, we retrieved PAR with MODIS data whose time resolution
is similar with the simulation step of WOFOST (Liu, et al., 2004);
the results of 7 through spatial interpolation are influenced by the
density and distribution characteristics of weather stations, and
there is only one weather station in the study area, causing acquiring
space distribution of 7 to be impossible. Since 7 is correlated with
LST for dense vegetation, NDVI-Ts method was used to obtain the
spatial distribution (Qi, et al., 2005).

Because rice in study area are mostly the series of Jilin japonica
rice, the hereditary characteristics of which during growth period
are general the same, so the crop parameters in model, including
specific leaf area, net photosynthetic rate, distribution coefficients
of day mass and so on, were set as uniform values according to
observed data and some data in related articles (Wu, et al., 2009).
Some parameters related to temperature, such as temperature sum
from transplanting to anthesis (TSUM1), temperature sum from
anthesis to mature (TSUM?2), were acquire from space distribution
in accordance with 7 calculated by the before-mentioned method. At

the same time, accommodation of the WOFOST model was carried
out to make it fit with simulation of rice growth in Changchun.

The spatial distribution of the leaf parameters in PROSAIL
such as contents of leaf chlorophyll and water were retrieved with
MODIS data based on green normalized difference vegetation index
(GNDVI) (Gitelson, et al., 1996) and normalized difference water
index (NDWI) (Gao, 1996) separately. Since soil in study area is
mainly black soil, we used observed soil reflectance data as soil re-
flectance of canopy parameters. The spatial distribution of direction
parameters, including solar zenith angle, view zenith angle, azimuth
angle, were derived from CCD images. Other parameters, such as
the content of day mass, carotenoid, brown pigment, mesophyll
structure parameter, leaf angle distribution and fraction of direct in-
coming radiation as well as hot parameter, were set as fixed values
based on observed or empirical values.

3.4 Optimization algorithm

Optimization is important to minimize difference between
simulated values and observed values in the process of assimilat-
ing remote sensing data into crop growth model. The property
of optimization algorithm and the dependence on priori knowl-
edge influence the actual application of assimilated crop model
in large part (Li, et al., 2008). In this study, an optimization
algorithm with simple principle, which can be easily integrated
into other models, was introduced-particle swarm optimization
algorithm (PSO) (Kennedy & Eberhart, 1995). The basic idea is
to group each individual as a particle (point) with certain speed
of flight without quality and size in multidimensional search
space. Every particle would modify their movement directions
and speeds through counting the optimal value in individual and
group in iterative process, forming the positive feedback mecha-
nism of group optimizing. Based on the fitness to environment of
the individual, each particle gradually moves to more excellent
location, and eventually to find optimal solution. The location of
particles is depended on cost function, whose input variables are
the coordinate values of the particles’ location.

In this study, the number of dimensions in multi-dimensional
search space represented the number of optimization parameters
(2). The number of particles represented groups containing two
optimized parameters (25 groups), the values of which were ran-
dom in the range. Once iteration happened, the random values
changed, the iteration would not stop until cost function value
was minimized. The maximum number of iteration was 400. If
the cost function value did not change when the time of iteration
exceeds 100, the iteration would stop.

3.5 Construction of remote sensing-crop simulation
assimilation framework model on region scale

The study calculated SAVI’ according to canopy reflectance
simulated by coupled model WOPROSAIL, and then minimized
the difference between SAVI’ and SAVI gotten from CCD im-
ages. PSO algorithm was introduced in the process to continually
adjust optimization parameters (IDTR and TSUMST) and then
SAVT’ simulated by WOPROSAIL was adjusted, making the dif-
ference between SAVI’ and SAVI converge until minimization.
Adjusted optimization parameters as the initial parameters of
crop growth model and run WOFOST to obtain precise dynamic
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process of rice growth, and thereby a field scale remote sensing-
crop simulation assimilation framework model named RS-WOP-
ROSAIL was constructed (Fig. 4). The expressions of SAVI and
the cost function are shown as below.

SAVI=— P " R (1, 5) @)
Puir F Prea +0.5
1 i=p 5
Q=; D -y) 3)
i=l

where p,.; and p,,, represent the red band (the third band) and near-
infrared band (the forth band) of CCD image respectively, Q is the
value of const function, P is the number of external assimilated
data, x; is SAVI at one point in time calculated by vegetation cano-
py reflectance simulated by WOPROSAIL, y, is SAVI at one point
in time calculated by CCD data.

With these regional parameters of crop, leaf and direction as
well as climate, acquired in Section 3.3, field scale RS-WOPRO-
SAIL model was driven for each pixel to acquire the space dis-
tribution of IDTR and TSUMST. With two optimized parameters
and regional parameters of climate as well as crop parameters,
WOFOST was driven for each pixel again, and a regional scale
remote sensing-crop simulation assimilation framework model
was established (Fig. 5).

4 ANALYSIS OF SIMULATION RESULTS

4.1 Continuous simulation of growth parameters on
spatial and time scale

The regional scale RS-WOPROSAIL model achieved the ob-

jective of spatial-time scale continuous simulation of rice growth
parameters, solving the discontinuity of spatial scale simulation
by crop growth model and time scale retrieval by remote sensing
information. Through bringing remote sensing information, the
assimilation model can be scaled up. The retrieval of rice growth
parameters with remote sensing information is influenced by cloud
and rain as well as time resolution of remote sensing image. When
remote sensing information is inaccurate, the precision of remote
sensing retrieval is influenced. Assimilation model generally was
not influenced by cloud and rain and the step-length is one day,
avoiding the problem of blank such associated with remote sensing
retrieval. Considering RS-WOPROSAIL established based on crop
growth model and canopy radiative transfer model, its mechanism is
stronger and the universality is higher compared with remote sens-
ing statistics method. Therefore, the region scale RS-WOPROSAIL
model could obtain the space distribution of rice growth parameters
at any point in time (step-length is one day) during growth period
(Fig. 6), and then we can estimate the rice growth status at anytime
in study area, providing the useful information for agriculture pro-
duction and management.

4.2 Change characteristics analysis of growth param-
eters on time scale

Before running the assimilation model, a group of initial op-
timization parameters were given different from observed datas,
such as IDTR and TSUMST were set for Day 147 (2009-05-27)
and 150°C respectively. Then optimized IDTR and TSUMST
were acquired through assimilating SAVI derived from CCD
data into RS-WOPROSAIL (Table 2). The difference among
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Fig. 6 Continuous simulation of LAI, WSO and TAGP of rice on spatial-time scale in study area A

optimized days and observed days including IDTR and day of
anthesis (IDAN) as well as day of mature (IDMA) in sample
plot were Two, three and four days, respectively. The difference
between optimized TSUMST and observed TSUMST also de-
creased drastically.

Table 2 Optimized results of IDTR and TSUMST of rice

TSUMST/®C IDTR/days IDAN/days IDMA/days

Initial values 150 147 222 274
Optimized values 194 139 219 264
Observed values 225 137 216 260

Error between initial

values and observed 75 10 6 14
values

Error between initial

values and observed 31 2 3 4
Values

Simulated the process of rice growth with the optimized IDTR
and TSUMST inputted WOFOST. Compared with the initial simu-
lated values by WOFOST and observed values, the results of simu-
lated rice LAI, WSO and TAGP by RS-WOPROSAIL were amel-
iorated, preferably reflecting that LAI and WSO as well as TAGP’
change with the growth period (Fig. 7). The optimized values of
LAI gradually increased after transplanting date (Day 139) until up
to maximum value 5.76 at heading stage (Day 222). The optimized
value of LAI gradually decreased (Fig. 7(a)) as rice growth enter
the veproductive stage and rice leaves were on the aging process.
After entering reproductive stage, the rice growth gave priority to
the increase of storage organs, leading to accelerate the growth of

WSO (Fig. 7(b)). At the late rice growth period, weight of stems
(WST) and weight of leaves (WLV) gradually decreased as stems
and leaf aging and dying gradually, but WSO gradually increased at
the same time, so the optimized value of TAGP gradually increased
during the rice growth period (Fig. 7(c)(d)). With assimilation of
remote sensing information into crop model, the relative error be-
tween simulation yield (the final WSO) and actual yield was 18.8%
instead of 33.6%, and the relative error between simulation final
TAGP and actual one was 14.5% instead of 29.3% (Table 3). It
demonstrated that the model RS-WOPROSAIL was reliable, which
established the foundation for constructing a regional scale model.

4.3 Change characteristics analysis of growth pa-
rameters on spatial scale

Before simulating continuously crop growth parameters on
spatial scale, RS-WOPROSAIL simulation framework model
was driven to get the spatial distribution of IDTR and TSUMST.
The distribution characteristic of optimized IDTR was IDTRD >
IDTRC > IDTRB > IDTRA (Fig. 8). The reason was 7 in study
region decreased gradually from northwest area to southeast area
(Table 4), but it could transplant rice only when the average daily
T kept above 13°C, so the IDTR of northwest area were earlier
than that of southeast area.

To make rice grow in the right way, more TSUMST were
needed through growing seeding in the greenhouse in the area
where the IDTR of rice was a little late. It could solve the problem
of impeding growth because of the low external temperature. The
distribution of optimized IDTR was TSUMST,, > TSUMST, >
TSUMST; > TSUMST, (Fig. 9).

Table 3 The optimized simulated results of rice yield and final TAGP

Initial values/(kg/hm’)  Optimized values/(kg/hm®)

Observed values/(kg/hm®)

Error between optimized valuer
and observed valuer/%

Error between initial valuer
and observed valuer/%

Yield 12007 10678

Final TAGP 21981 19465

8987 33.6 18.8

16994 29.3 14.5
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Fig. 7 Continuous simulation of rice growth parameters on time scale

Fig. 8 The optimized results of IDTR of rice in study areas

Table 4 Average of four-day temperature observed values in study areas

/C
Study areas
The number of days
B C D
136—139 14.8 13.1 10.4 9.7
138—141 16.7 14.5 12.7 11.3
141—144 18.4 16.8 14.2 12.8
142—145 19.2 18.1 15.8 14.6

With optimized IDTR, TSUMST and the climate and crop
parameters of PAR and 7, the last of which was estimated from
remote sensing, WOFOST was driven to acquire the spatial dis-
tribution of rice growth parameters (Fig. 10). For comparison,
simulated growth stages of study area A were regarded as the
standard of the rice growth stages in the study. As shown in Fig. 10(a),
the rice LAI of the four study areas were relative low after the

(€)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved.

transplant for about one month (Day 140). At the heading stage
(Day 216), the rice LAI of four study areas were relative high
and the relationship of the values of LAI of the four study areas
was LAI,>LAI;>LAI>LAI,. Because of rice growth entering
reproductive stage at the mature stage (Day 259) and leaf aging,
the values of rice LAI in the four study areas decreased. At the
same time, comparing with the rice growth date of study area
A, the rice growth date of the other study areas were delayed, so
characteristic of the rice LAI of study area at the mature stage
was LAI, > LAI. > LAI, > LAI,.

Because rice growth was still in vegetative period in Day 140,
the values of WSO in study area were zero and did not increased
before rice growth entered reproductive period from Fig. 10(b).
The spatial distribution possessed the relationship of WSO >
WSO;>WSO>WSO,,. And the spatial distribution of rice WSO at
mature stage had the some relationship at heading stage.

TAGP at the rice growth early stage were also small. At head-
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ing and mature stage, the spatial distribution of TAGP also pos-
sessed the relationship of TAGP, > TAGP,; > TAGP. > TAGP,
(Fig. 10(c)).

The average simulated yield in the four study areas was 8724 kg/hm”
and the average actual yield in Changchun was 6848 kg/hm’,
the relative error of simulated results in the region was 27.4%. It
proved that continuous simulation of rice growth parameters on
spatial scale with the region scale RS-WOPROSAIL is reliable.

5 CONCLUSIONS

A regional scale remote sensing-crop simulation assimila-
tion framework model RS-WOPROSAIL performed spatial-
time scale continuous simulation of rice growth parameters. The
change characteristics of rice growth parameters on spatial-time
scale was analyzed. The main outcomes in this study are shown
as below.

(1) It is an effective approach to solve scaling- up problem
that regionalization of the input parameters in the coupled model,
which have the variability on regional scale, was established via

remote sensing data retrieval.

(2) RS-WOPROSAIL model performed spatial-time scale
continuous simulation of rice growth parameters, it made mecha-
nism and universality higher. And established the foundation for
analyzing the change characteristics of rice growth parameters
on spatial-time scale.

(3) The simulation precision of growth parameters, including
LAI and WSO as well as TAGP that were reported from the RS-
WOPROSAIL model, is better than that of crop growth model,
preferably reflecting the change characteristics of rice growth
status on the spatial-time scale. The relative error between simu-
lation yield and actual one was 27.4%, which indicated the model
is reliable for the application on region scale.

(4) Because of the limitation of observed data, many parame-
ters of coupled model WOPROSAIL were set as default or fixed
values. At the same time, many basic problems about remote
sensing have not been solved yet. The error should be made in
retrieval of regional parameters with remote sensing information.
In addition, the crop growth model under potential production
level was established in this study, but the assimilated remote

216 259 140 259 7 140 216 259
The number of days The number of days The number of days )
—/(kg/hmz) - - /(kg/hmz) e e /(kg/hm”)
0.5 5.5 0 10000 5000 20000

(a) LAI

(b) WSO

(c) TAGP

Fig. 10 Continuous simulation of rice growth parameters on spatial scale

(C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved.
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sensing image contains information about water, nutrition, pest
and disease damage and so on, which makes error exist in the
assimilation process. All these factors resulted in the deviation
between simulated results and actual ones, which needs more re-
search and improvement.

In a word, The RS-WOPROSAIL model constructed with
remote sensing data, crop growth model, and canopy radiative
transfer model as well as particle swarm optimization algorithm
effectively achieves the objective of rice growth parameters spa-
tial-time scale continuous simulation. On that basis, the change
characteristics of rice growth parameters on spatial-time scale
were analyzed, providing the useful information for agriculture

production and management.
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