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Nephogram super-resolution algorithm using over-complete
dictionary via sparse representation
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Abstract: Motivated by the fact that image patch can be sparse represented using a suitable over-complete dictionary, a nepho-
gram super-resolution algorithm via sparse representation using over-complete dictionary is presented. During the experiment
two dictionaries D, and D, for the low-resolution and high-resolution nephogram patches were trained jointly in order to guar-
antee that the low-resolution and high-resolution patch pair possesses similar sparse representations as to their own dictionary.
Through solving optimization problem, the sparse representation for each low-resolution nephogram patch with respect to D, was
obtained, and the representation coefficients were applied to D, in order to generate the corresponding high-resolution nephogram
patch. At the end of experiment the high-resolution nephogram which satisfies the reconstruction constraint was achieved by us-
ing gradient descent algorithm. Numerical experiments for infrared and visual nephogram demonstrate the effectiveness of the
proposed algorithm. Moreover, the proposed algorithm outperforms interpolation based methods in terms of visual quality and
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the Peak Signal to Noise Ratio (PSNR).
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1 INTRODUCTION

Clouds affect the Earth’s weather system. As an important
branch of remote sensing, meteorological satellite nepho-
gram is an important tool for the weather forecast and cloud
evolution. Currently, meteorological satellite can provide
considerable imaging channels, but the resolutions of differ-
ent channels often vary. For example, by the limitations of
technical and the received radiation wavelength, the resolu-
tion of infrared channel tends to be lower, which brings an
adverse impact on the integrated use of multi-channel data
and also increases the difficulty of data analyzing and system
designing (Georgiev & Kozinarova, 2009; Ricciardelli, et al.,
2008). If down-sampling the high-resolution channel data to
make it consistent with the low-resolution channel, the valu-
able information of high precision data is wasted. Therefore,
designing corresponding super-resolution algorithms to im-
prove the accuracy of the low-resolution channel data has a
great practical significance and application meaning.

Since Harris put forward the idea of super-resolution in
twentieth century 1960s, super-resolution has attracted wide
attention of the academia and some effective algorithms
has been proposed and applied in remote sensing image
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processing (Merino, et al., 2007, Li, et al., 2010). However, current
super-resolution algorithms used for remote sensing images do not
consider the complexity and irregularity of the texture structure
of the nephogram. Such as the traditional interpolation method to
enlarge the image can not increase the information in nature, and
with the increase of magnification factor, there will be serious ring-
ing or checkerboard phenomenon in the edge regions. According
to the assumption of imaging model, reconstruction constraint-
based algorithm can restore high resolution image from multi-
frame or single-frame low-resolution images by solving the inverse
problems. However, such inverse problems are severe ill-posed, it
is difficult to obtain stable solution. From manifold learning theory,
Chang, et al. (2004) considered that the distinct spaces of low- and
high-resolution images form the similar manifolds, and proposed a
super-resolution algorithm which called Neighbor Embedding (NE).
NE established the mapping between the low-resolution patch
and the high-resolution one via the training samples and predicted
high-resolution patch as a linear combination of the low-resolution
neighbor patches; however, the algorithm had disadvantages that
the obtained high-resolution images often over smoothly except for
the high computational complexity. In recent years, with the devel-
opment of over-complete dictionary, multiscale geometric analysis
etc., image sparse representation theory has aroused great concern

Foundation: Natural Science Foundation of Zhejiang Province (No.Y 1080778, Y1111061); Nonprofit Technology Research Program of Zhejiang Prov-
ince, China (No.2010C33104); Key Project of Chinese Ministry of Education (N0.209155)
First author biography: JIN Wei (1969— ), male, associate professor, his research interests are wavelets, remote sensing image processing, multi-scale

geometric analysis, and computer vision. E-mail: jinwei@nbu.edu.cn



276 Journal of Remote Sensing

E R 2012,16(2)

(Feng, et al, 2008). The theory indicates that natural images are
always sparse under the suitable over-complete dictionary (Elad &
Abharon, 2006; Rauhut, et al., 2008). Sparse representation model
can characterize the internal structure and the prior attribute of the
image, and has been widely used in image inverse problems such
as denoising, deblurring, and compressed sensing etc. Motivated
by the sparse representation theory and reference the idea of the
NE algorithm, a nephogram super-resolution algorithm using over-
complete dictionary via sparse representation was presented to im-
plement super-resolution for the infrared and visible nephogram.

2 THE PRINCIPLES OF THE ALGORITHM

Suppose a signal X e R” can be represented sparsely by an over-
complete dictionary D e R" (N>n), D contains N atoms, then the
signal X can be written as X=Da,, where a, e R" is a vector with
m (m<<N) nonzero entries. We construct a measurement matrix
@ e R"™" (k<n) to perform projection transform for X and observe
measurements Y=@X=®Da,  R*. Without loss of generality, we
treat X as a high-resolution image (patch), while Y as its low-
resolution counter part, then the problem of image super-resolution
is converted to find the sparse representation coefficients a, from
measurements ¥ and finally reconstructs the high-resolution image
X. Since k<n, image super-resolution is an underdetermined prob-
lem. According to the theory of compressed sensing (Provost & Les-
age, 2009), if a, is sparse sufficiently and matrixes @ and D satisfy
the Restricted Isometry Property (RIP), then this underdetermined
problem is to be stable. This theory provides a new way to realize
image super-resolution, so designing an appropriate over-complete
dictionary to obtain sparse coefficients becomes a key factor.

From the idea that low- and high-resolution images form the
similar manifolds (Chang, et al., 2004; Yang, et al., 2008), we as-
sume that low- and high-resolution image patches have the same
sparse representations about their corresponding over-complete
dictionary. On this basis, the training samples were split into patch-
es to form low- and high-resolution image pairs, then a coupled
over-complete dictionaries D, and D, where D, for low-resolution
patches, and D, for high-resolution ones were trained by using a
rational training algorithm. In the processing of super-resolution,
low-resolution nephogram will split into patches in the same way,
then the sparse representation with respect to the low-resolution
dictionary D, will be obtained and the representation coefficients
will be used for the high-resolution dictionary D, directly in order
to predict the corresponding high-resolution patches. Meanwhile, in
order to eliminate the block effect of the reconstruction results, we
adopt an overlapping split scheme, and use the gradient descent al-
gorithm to generate the high-resolution nephogram in order to meet
the reconstruction constraints.

3 JOINT TRAINING FOR OVER-COMPLETE
DICTIONARY PAIR

Firstly, we split high-resolution nephogram and its correspond-
ing low-resolution nephogram into patches, then, choose K pairs of
patches to form the training samples: T={X", ¥'}, where X"={x}¥,
represents the high-resolution nephogram patches and Y'={y}%,

represents the corresponding low-resolution ones (or extracted fea-

tures). Our goal is to acquire two dictionaries D, and D,, which are
trained to contain the structures of samples, and have the similar
sparse representations for each patch pair x;and y; with the same
representation coefficients. The problem can be formulated as:

{Dh,a}zargumin”X]' —Dh-a“z+i;ti|ai |1 (1)
hs @ i=1
D10} =arg min| ¥’ ‘Dl'““z+2’1f|“f ! 2

where a={a,}, represents the sparse coefficients and /; balances
the sparse level of the coefficients and its capability to approximate
original signal. In order to keep low-resolution nephogram patches
have the similar representation to high-resolution ones, Eq. (1) and
Eq. (2) were joint training:

D..D _ .1 X" D.al
(.. Dya) =arg min X" -y, +

K
|y _D,a||+(%+$);li le],

where N and M are the number of pixels of the high- and low-reso-
lution nephogram patches, 1/N and 1/M balance the two cost Eq. (1)
and Eq. (2). For the convenience, Eq. (3) can be reformulated as:

K
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Now, we apply iterative methods to solve Eq. (4). First, given dic-
tionary D, we find represent coefficients a; for each pair of training
sample X, to form sparse matrix a={a,}¥,, then dictionary D, can
be updated according to a. The specific steps described as follow:
Step 1 Initialize D with a Gaussian random matrix;

Step 2 Fix D, solving a according to:

. 2 ’
a; =arg mm”XC,;DC . al.”Z +4;
a@;

@, )

In this step, we try to find representation coefficients for each
training sample under fixed dictionary D¢; Eq. (5) is a L;-norm
optimization problems, which can be solved by the algorithms such
as Basis Pursuit (BP), Iterative Shrinkage/ Threshold (IST), etc.
(Donoho, 2006; Bioucas-dias & Figueiredo, 2007).

Step 3 Fix a, update D; in this step, as the sparse representa-
tion coefficient ; is known, we can ignore the second item of the
right side of Eq. (4). That is:

D= arg min |Xc—Dc-a ||§ (©6)
The above is a quadratic programming problem and we use the al-
gorithm proposed by Lee(Lee, et al.,2007) to solve it;

Step 4 Iterate between Step 2 and 3.

After iterations (in our implementation, the number of iterations
is set as 25), we can get the solution of Eq. (4) and therefore obtain
the expected over-complete dictionary pair {D,, D,}.

4 NEPHOGRAM SUPER-RESOLUTION VIA
SPARSE REPRESENTATION

In this section, we will discuss the super-resolution processing
by applying the obtained dictionary pair {D,, D} to the nepho-
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grams. At first, we split low-resolution nephogram into patches,
then for each low-resolution patch, consider optimization problems
as follow:

| @)

where F is an operator for feature extraction, the first item of the

a, = arga@in |F-D,-a,—F-y, ||2 +4,| e

right side Eq. (7) measures the overall similarity between recon-
structed and original nephogram, while the second part is the con-
straint of sparsely.

We can get representation coefficients @; of each low-resolution
nephogram patches by solving Eq. (7). After applying a; to D,, we
can obtain corresponding high-resolution nephogram patches by
x=D,a,. However, if we solve each local patch individually, the
blocking effect would be introduced in the reconstructed high-
resolution nephogram. To minimize this negative effect, an overlap
blocking scheme has been adopted in this paper. Finally, gradient
descent algorithm was adopted to maintain that the reconstructed
high-resolution nephogram patches satisfy reconstruction con-
straint.

Step 1 For the low-resolution nephogram, we design an overlap
block scheme: for each 3x3 patch y,, we set 1 pixel overlap in each
direction such as the neighboring blocks overlap one row or col-
umn with 3 pixels overlapped. (If the magnification factor is 2x2,
then the size of corresponding high-resolution patch x; is 6x6 and 2
pixels overlap in each direction with 12 pixels overlapped between
neighboring blocks; similarly, 3 pixels overlap in each direction for
3x3 amplification.)

Step 2 The patches are processed in raster-scan order in the
nephogram, from left to right and top to bottom. The sparse repre-
sentation coefficients a; of the nephogram patch were obtained by
joint solving the following optimization problems:

a, :argamin ||F-Dl~a,*F'y, E*ﬂ'”a:”l ®)

o, =arg min |0-Dya,~R[, + B, ©)
where the operator O extracts the region of overlap, R is a matrix
which contains the overlap pixels of the current target patch and
previously reconstructed neighboring high-resolution patch. For
simplicity, we set the Lagrange multipliers 4 and /5 to 1. Then Eq. (8)
and Eq. (9) can be rewritten as:

a, =arg min|D'- & -y’
@;

here D = F-D |  |Fy
where _O-Dh’y_ R P

Step 3 Generate the corresponding high-resolution nephogram

L+ e, (10)

patches x=D,a;;

Step 4 After all the patches were processed, we constitute the
preliminary high-resolution nephagram: X,={x,}% ;

Step 5 For X, solving the following optimization problem to
find the final high-resolution nehpogram which satisfies the recon-
struction constraint:

X =arg min|S-B-X- Y[+ X-X,|. (11)
where B represents a blurring filter of nehpogram (Considering
that the low-pass filter of nephogram is mainly caused by atmos-
pheric turbulence, whose transfer function can be approximately
expressed as B(u, v)=exp[—c(u’+")"*], in this paper set ¢=0.00025),
and S is the down-sampling operator. The first item of right side of
Eq. (11) represents the degradation model of nehpogram, and the

second item describes the similarity between reconstructed nehpo-
gram and ideal nehpogram. Solving Eq. (11) using gradient descent
algorithm, we can get desired super-resolution nephogram X.

5 NUMERICAL EXPERIMENTS

In this section, numerical experiments were performed to dem-
onstrate the effectiveness of the proposed Super-resolution (SR) al-
gorithm. In our experiments the proposed algorithm was compared
with Neighborhood Embedding (NE) algorithm (Chang, 2004) (set
neighborhood parameters k=10), Nearest Neighbor Interpolation
algorithm, and Bi-cubic Interpolation algorithm. The performances
of different SR algorithms were evaluated in terms of visual qual-
ity, PSNR and Entropy.

The training nephograms were selected from the high-resolution
channel (visible channel) of MTSAT satellite. First, we selected a
set of original visible nephograms to generate corresponding low-
resolution nephograms by blurring and down-sampling. Then, the
high- and low-resolution nephograms were split into patches to
form training samples by the method we described in section 3. In
this experiment, we select 10000 nephogram patch pairs to train
two dictionaries D, and D,, both of which contain 1024 atoms. (This
dictionary pair can be used to implement 2x2 magnification, and in
order to change the magnification factor, simply re-training the ap-
propriate dictionary pair). In the implementation of the specific al-
gorithm, we also selected an appropriate operator to extract features
of the low-resolution patch. As for nephogram super-resolution, the
high frequency components of the low-resolution nephogram con-
tained more useful information than the low frequency components,
we adopt Chang’s method (Chang, 2004), which selected the first-
order template [-1, 0, 1] and second-order template [1, 0, -2, 0, 1]
as feature extraction operators for Eq. (7) and Eq. (8).

We applied the trained over-complete dictionaries to the visible
and infrared nephogram super-resolution. The test nephograms
were collected form the infrared 2(IR2) and visible channel of
MTSAT satellite at 12:06 on august 62009, when Typhoon Mora-
kot had generated. In order to analyze the results easily, we cut out
a specific area from the original nephogram and ensure that the
selected area contained complete typhoon cloud relatively. As for
the visible nephogram which were higher resolution originally, we
design a simulation experiment. First, the original visible nepho-
gram was degraded according to the degradation model to generate
corresponding low-resolution nephogram, then magnify it to imple-
ment super-resolution, and finally we evaluated the performance
of the algorithms in terms of Peak Signal to PSNR and Entropy.
As for the infrared nephogram, due to its original low-resolution,
we apply super-resolution to it directly and evaluate the results of
various algorithms in terms of Entropy merely. Fig. 1 illustrates the
simulation results on the visible nephogram with magnification fac-
tor 2x2 using various methods.

The experiment results show that the algorithms based on inter-
polation can have a better performance in magnifying large-scale
structure in the nephogram. However, the textures with small-scale
were lost significantly. It is clear from the zoom in regions that the
results of algorithms based on interpolation exists serious checker-
board effect and the overall image looks blurry. The NE algorithm
is similar to ours in the sense that both algorithms can keep small-
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(c) Neighborhood embedding algorithm

(b) Bi-cubic Interpolation algorithm

(d) Proposed algorithm

Fig. 1 The super-resolution reconstruction images using various algorithms

scale details such as texture efficiently, but the proposed algorithm
has a clearer reconstruction result. Moreover, NE algorithm’s re-
construction result depends on the number of neighborhood. On the
other hand, NE algorithm is more complex (when algorithms run in
a notebook with core 1.83 G CPU, 1 MB RAM, NE algorithm takes
93.51 s while the proposed algorithm takes 37.26 s). Therefore, the
proposed algorithm is relatively faster.

In order to evaluate the performance of various algorithm
quantitatively, PSNR and Entropy were used as objective indicator
to measure the quality of reconstruction results. As for the super-
resolution of nephogram, PSNR can measure the fidelity of the
super-resolution results with respect to the original high-resolution
nephogram, while Entropy measures the amount of information
contained in the nephograms. In general, larger values indicate bet-

ter quality of super-resolution results. Meanwhile, in order to test
the feasibility and effectiveness of the proposed algorithm for other
satellite data, we also selected the FY/2D satellite’s data from IR2
and visible channel at 12:30 on March 25, 2011 in China’s land area
to conduct super-resolution experiments. The quantified indica-
tors PSNR and Entropy for the super-resolution results of MTSAT
and FY/2D satellites’ data were listed in Table 1 (As we apply
super-resolution for infrared nephograms directly, we only evaluate
the performance of the various algorithms in terms of Entropy).

As can be seen from the Table, the proposed algorithm outper-
forms interpolation based algorithms in various evaluation indica-
tors, both for visible and infrared nephograms. The nearest neigh-
bor interpolation algorithm has the lowest PSNR and Entropy. As
for the NE algorithm, the PSNR is similarly to our algorithm but
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Table 1 Comparison of PSNR (dB) and Entropy for the reconstruction results using various algorithms
Visible nephogram Infrared nephogram (IR2)
Satellite data Various algorithms
PSNR Entropy PSNR Entropy
Proposed algorithm 32.6693 7.5127 — 7.2304
Neighborhood embedding 32.6704 7.2119 — 7.1291
MTSAT
Nearest neighbor interpolation 27.0065 6.9364 — 7.0338
Bi-cubic interpolation 28.4253 7.0142 — 7.0556
Proposed algorithm 35.8905 7.2872 — 6.9230
Neighborhood embedding 35.2735 7.2145 — 6.8745
FY/2D
Nearest neighbor interpolation 29.1769 7.0524 — 6.5237
Bi-cubic interpolation 31.2348 7.0891 — 6.6381

in terms of Entropy, the NE algorithm is relatively poor. This also
confirms that the results of NE algorithm are too smooth that some
details of nephograms were lost. As the reasons for this phenome-
non, we suggest that the nephograms contain rich of texture details,
and the over-complete dictionary we trained can be well expressed
this texture characteristics of nephograms, just appropriate for han-
dling such signals.

6 CONCLUSIONS

This paper introduced the over-complete dictionary based sparse
representation theory into nephogram super-resolution. First, the
over-complete dictionary pairs which contain the information of
high- and low-resolution nephogram were obtained via learning,
and the overlapped blocking scheme was adopted to get sparse
representation of the low-resolution nephogram respect to the low-
resolution dictionary. Then the representation coefficients were ap-
plied to the corresponding high-resolution dictionary to reconstruct
high resolution nephogram. The experiments results demonstrate
that the proposed algorithm is better than traditional methods in
terms of visual quality and quantitative indicators. It both shows
the feasible and effectiveness of super-resolution for the nepho-
gram and extends the application of the image sparse representation
theory. Moreover, this paper provides a good foundation for the
subsequent researches such as cloud type classification and convec-
tive cloud identification.
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=
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AL b, woR IR AR
B3R fi(Donoho, 2006; Bioucas-diasfllFigueiredo,
2007);
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$]3 [HEa,
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O — A TR R, ASSOR FH Lee i 45 H Y77
HoRff(Lee 45, 2007);
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K F ChangfIi % FH 1Y 5 2:(Chang, 2004), #E—Fisitk
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