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Multi-scale watershed segmentation of high-resolution
multi-spectral remote sensing image using wavelet transform
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Abstract: In order to reduce over segmentation caused by only using watershed algorithm, an efficient multi-scale approach
using wavelet transform is presented for the segmentation of the pan-sharpened multi-spectral QuickBird image. The approach
toward complete segmentation includes four steps, namely, multi-scale images representation, image segmentation, region merg-
ing and result projection. First, the wavelet decomposition is implemented independently for each spectral band to form a number
of new images at lower resolutions according to the size of original image. Gradient images are obtained by applying phase con-
gruency model to approximation coefficients, and gradient magnitudes of all bands are fused for each scale. The optimal scale of
wavelet decomposition is selected through analysis local gradient variance varying correspond to different scales and varieties
of geo-objects. Second, a multi-level marker extraction algorithm is subsequently used to locate regions that are homogeneous,
by moving threshold and extended minima transform. A marker driven watershed transform is then used to get segmented image
based on gradient reconstruction. Third, a multi-constraint region merging strategy considering spatial adjacency relation, areas,
spectral and textural features is proposed to merge the adjacency region pairs by searching the minimum merging cost among the
initial segments. Finally, the detail coefficients are updated and the inverse wavelet transform is computed to project the initial
segmentation to higher scale images, and pixels at boundaries are processed to keep region contours as original scale is reached.
The experimental results demonstrate that the developed method can be applied to the segmentation of high-resolution multi-
spectral remote sensing image as well as alleviate over segmentation and get the high accuracy segmentation.
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thresholding and feature space clustering approaches since they

1 INTRODUCTION

take into account both feature space and the spatial relation of pix-

Image segmentation is a bridge between a low-level vision
subsystem including image processing operations such as noise re-
duction, edge extraction and a high-level vision subsystem such as
object recognition, image analysis and interpretation such advanced
processing (Sprikovska, 1993). In the high-resolution remote sens-
ing image processing, the image segmentation is an important
prerequisite for object-based analysis including feature extraction,
image classification, object detection and recognition. In addition,
to obtain the remote sensing image information by segmentation is
an effective means of geographic data updating (Hu, et al., 2005),
while promoting the full integration and rapid development of GIS
and Remote Sensing (Blaschke, ef al., 2000).

Region-based segmentation methods are generally better than
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els simultaneously (Hu, ef al., 2005). Watershed transform takes the
gradient magnitude map as undulating terrain, which will be split
into different sizes of the catchments basin through the establish-
ment of “watershed line”. Currently, the watershed transform has
a good performance in segmentation of multi-spectral (Sun & He,
2008; Mao, et al., 2009; Xiao, et al., 2009) and hyperspectral (An-
gulo, et al., 2009; Tarabalka, et al., 2010) remote sensing image.
For it is prone to over-segmentation problem, there have been many
improvements to this method (Nguyen, et al., 2003; Kothainachiar,
et al., 2006), and generally in the gradient computation, marker ex-
traction and region merging. Multi-scale approach can significantly
improve segmentation results (Wang, et al., 2001), while a multi-
scale watershed segmentation method based on discrete wavelet
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transform has been recognized by researchers (Jung & Scharcanski,
2000; Jung, 2003; Kim & Kim, 2003).

The segmentation method combining watershed transform with
discrete wavelet transform can get good results, but there are still
some problems. For example, the existing scale selection method for
wavelet decomposition does not apply to remote sensing images, the
object markers are without consideration of different geo-objects,
and the effect of region merging and result projection are not so
good, etc. Some improvement measures for watershed segmentation
of high-resolution multi-spectral remote sensing image are presented
in this paper. Firstly, discrete wavelet transform is implemented to
produce multi-scale images, and phase congruency model is applied
to extract image gray gradient. Then, to select the optimal scale ac-
cording to the local variance of the gradient, and the segmentation
will be taken from the approximate coefficient at this scale. Finally,
marker-based watershed segmentation is implemented based on
multi-level markers and gradient reconstruction, and segmentation
result of the original image is obtained through the multi-constraint
region merging and position-keep boundary processing.

‘ Multi-band images

v

‘ Discrete wavelet transform ‘
|

2 SEGMENTATION METHOD

This study on the segmentation method will focus on the fol-
lowing four aspects: (1) the optimal decomposition scale must be
identified when generating multi-scale remote sensing images by
using wavelet transform; (2) the geo-objects with different struc-
ture and distribution in remote sensing image should be taken into
account, since object marker is very important to watershed
transform; (3) since the ground surface is complex, regional
boundaries, areas, spectral and texture features such factors need
to be considered when region merging; (4) the location shift of the
regional boundaries should be avoided when segmentation result is
projected to the higher scale image by inverse wavelet transform.
The flow chart of this method is shown in Fig. 1, where the input
data are the four bands Quickbird multi-spectral remote sensing
images which are the near infrared, the red, the green and the blue,
arrows indicate the relationship between the steps of the method,
the solid line boxes represent data or operations and the dotted line
boxes represent the four main links.
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Fig. 1 Flow chart of the method proposed in this paper

2.1 The selection of optimal scale of wavelet decomposition

According to the Matllat algorithm (Mallat, 1989), three high-
frequency detail coefficients such as the vertical, the horizontal and
the diagonal and a low frequency approximation coefficient are ob-
tained by down sampling using discrete wavelet transform. In this
paper, the Haar wavelet transform (Haar, 1911) is used to generate
the coefficient sub-images since it has low computational complex-
ity and precise spatial position. Set the decomposition scale as J,
the sub-images can be expressed as:

w Sl wl W W o R ) (1)

where W is the approximation coefficient; ! is the horizontal
coefficient; W/ is the vertical coefficient; /¥ is the diagonal coef-
ficient.

The selection of wavelet decomposition scale J will affect the
calculational time and the quantity and quality of the results of
watershed transform segmentation. It is generally up to the size and
noise level of the image, Jung (2007) proposed a general calcula-
tion formula to make a balance between noise reduction and detail

maintain, which is expressed as:

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved.
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where rnd( ) is an integral function; M and N are the number of row
and column in the image. However, this method can only be ap-
plies to the general image while the scale differentiation of various
geo-objects in remote sensing image cannot be taken into account.
Because the detail information of the geo-objects in different scale
images will change accordingly when the remote sensing images
are decomposed by using wavelet transform. For example, the geo-
object details in the original scale image will disappear and the
geo-object outlines are more clearly in the large scale image, and
different geo-objects will eventually be mixed up after multiple
times wavelet decomposition.

The local variance of the same surface areas is more compara-
ble (Ming, et al., 2008), so a wavelet decomposition scale selec-
tion method is proposed based on local gradient variance of multi-
spectral remote sensing images. Firstly, the original image is of
four bands are decomposed by the Haar wavelet to the scale Eq. (2)
calculated. For example, if the image size is 1024 x 1024 pixels,
then J=4. The scale of the original image is set as 1, thus the wave-
http://www.cnki.net



910 Journal of Remote Sensing

#ERFE|R 2011, 15(5)

let transform has decomposed 3 times when J=4. Secondly, the
phase congruency gradients (Xiao, ef al., 2007) of 4 bands at each
scale are calculated respectively, and the gray gradient amplitudes
of different bands are fused by Eq. (3), that is

G =max(G,,G,,G,,G,) (3)
where G,, G,, G;, G, are respectively the phase congruency gradi-
ent of 4 bands. In order to make the samples at each scale have the
same areas, samplings of these geo-objects are respectively taken
with templates of different sizes at the same location in gradient
images at each scale. The mean local variances of the geo-objects
at each scale are calculated according to the Eq. (4), and the mean
local variance of all geo-objects is calculated at each scale from the
whole image level. The scale corresponds to minimum mean local
variance is taken as the optimal decomposition scale, because the
internal homogeneity of the geo-object is the highest at this time,
which indicates the gradient magnitude characterize the geo-objects
with highest accuracy.

o =;z$;;[0<x,y)—cf “
where o7 is the mean local variance of the geo-object k; / is the
sample number of the geo-object k; m and n are the length and
width of the sampling template; G(x, y) is the gradient amplitude
of the pixel at line x and row y calculated by Eq. (3); ¢ is the mean
gradient in the template.

2.2 Extraction of multi-level markers

The homogeneous region is extracted as the marker from the
gradient amplitude image at the optimal wavelet decomposition
scale. Based on extended minima transform (Soille, 2003), and
combining with moving threshold and regional growth (Hill, ez al.,
2003), multi-level marker extraction method guided by gray rel-
evant is proposed.

Firstly, between the minimum and the maximum of the gradi-
ent amplitude image, the threshold sequence H about height is set

based on mean and variance, the calculation formula is
H= mean(@) +T(i)- std(G)
min(G) < H < max(G) ©)

where mean and std are the mean and variance of the gradient im-
age @; T(i)is the modulation of the threshold sequence H. The size
of modulation is set according to the complexity of geo-objects,
that is to say, if the geo-objects are of few class and simple struc-
ture, a larger move interval is applied, otherwise a smaller move in-
terval applied. To mark all geo-objects as far as possible, maximum
marker threshold is set. This threshold takes the areas of a planar
geo-object with smooth texture.

Then, markers are extracted from the gradient image succes-
sively based on H to get multi-level marker image. All markers in
each level is labeled as M, (¢ and p are respectively the level and
number of M). If the central coordinate of a lower level marker
is among the coordinate range of an upper level marker, the two
markers are “child-parent” related. In this way, an upper marker
may be related to several lower markers, but a lower marker can
only belong to a certain upper marker or not at all (limited by the
maximum marker threshold).

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved.

Finally, the relevance of the upper and lower markers is calcu-
lated according to the panchromatic image. If the “child-parent”
relationship is set up, the gray histogram of the regions correspond-
ing to the two markers in panchromatic image are respectively cal-
culated, and their relevance is

P ny (h,h)=Y h,> h, ©

Sz =) iy i~ h)?

where 4, and /,are respectively the histogram of the two markers; n

is the gray level of the histogram. To set the relevance threshold as
Ty, and analyze the relevance of the two markers. If the relevance
is greater than T, the parent marker can represent the child marker;
otherwise the child marker is maintained. The markers of all
levels which meet above condition are united to get the final

marker image.

2.3 Multiple constraints region merging

Gradient image is modified by using minima imposition tech-
nology based on multi-level marker image, and the watershed
method based on the FIFO queue (Vincent & Soille, 1991) is used
to get segmentation. From the result, we can find that the adjacent
homogeneous regions may belong to a same class and they are
similar in spectral and texture to some extent. Therefore, some
rules need to be established for merging these regions. Since the
geo-objects in high-resolution remote sensing images are of clear
feature and complex relationship, the spectral and texture features
should be taken into account in region merging. The texture fea-
tures are extracted by using Gabor wavelet, which is expressed as
(Petkov & Kruizinga, 1997)

"2 "2 ’
;(X)Z_(ZVJ/)J - cos (2rr xz+ ‘P] (7)

hH.l, s ./(x,y): exp[—

where x'=x-cosf+y-sinf, y'=—x-sinf+y-cosd; x and y are coordinates
of pixel location in spatial domain; 1 and € are the scale and direc-
tion of Gabor function; ¢ is the phase angle; o is the Gaussian ra-
dius; y is the Gaussian envelope aspect ratio.

Set A, B as two adjacent regions, merger cost function in fol-
lowing form is used

_ LA'LB SA'SB

¢ Ly Sy+S,

[aA FSFy (- o)A fF! Fy }} ®)
where L,, Ly and L, are respectively the perimeter and common
boundary length of region A, B; S, and Sy are the areas of region A,
B; a is the weight of spectral feature; F° and F” are the mean value of
spectral and texture feature of region A or B ; A{-,-} is the Euclide-
an distance between the mean values of region A and B. Eq. (8) shows
that, when the common boundary between the region A and region
B counts for a larger proportion of their respective perimeter, their
respective areas is small and their spectral and texture feature are
to be similar, the merging cost would be relatively small and the
merging would be more reasonable. The merging of adjacent re-
gions will take following steps.

Step 1 To label all regions with serial numbers and calculate
the mean value of feature vector consist of the spectral and Gabor
texture for every region.

http://www.cnki.net
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Step 2 To make regional adjacency graph and obtain the ad-
jacent regions pairs, and extract the areas, perimeter of all regions
and the length of common boundary between the adjacent regions.
Step 3 To calculate the merging cost of all adjacent regions and
sort the costs to find the two regions corresponding to the minimum
value.
Step 4 Let region A is labeled behind region B, to make region
merging and data update as follows:
e Add up the perimeter of region A and B and minus twice the
length of the common boundary to get a new perimeter of re-
gion B.

o Add the areas of region A and B with the length of the com-
mon boundary to get the new areas of region B.

e Turn the adjacent relationship of region A to region B.

e Turn all common boundaries relevant to region A to region B.

e Merge up region A and B and the serial number of region B

maintained.

Step 5 To make cycle calculation following step 3 and step 4
until the following two stopping threshold are satisfied: the maxi-
mum region areas and the minimum feature Euclidean distance.
The former is for region merging costs reduction, the latter high-
lights the importance of spectral and texture feature.

2.4 Projection of segmentation result

Since the wavelet decomposition is down sampling based on
a multiple of 2, the segmentation results after merging need to be
stepwise projected to the original image by the wavelet inverse
transform. Jung (2003) processed the boundary in projection ac-
cording to the smallest gray difference between boundary pixels
and their neighbor pixels. However, the calculated amount of this
method is large, and the boundary tends to get a sharp displacement
after several times of projection. In order to keep the border posi-
tion of the region in the projection, a sliding template process ap-
proach is proposed in the following (just one band image needed).
The wavelet decomposition coefficients at the scale corresponding
to the segmentation results are amended as

where [ is the approximate and detail coefficients. Eq. (9)
shows that the pixels of the approximation and detail coeffi-
cients at boundary are 0, but the other pixels retain the origi-
nal value.

Fig. 2 shows the boundary processing. First, the boundaries
are projected to the approximate coefficient at higher scale by the
wavelet inverse transform, and their width are of 2 x 2 as a result
of the Haar wavelet (Fig. 2(a)). Second, every region is labeled and
sorted (Fig. 2(b)), then a 3 x 3 template (the shadow in Fig. 2(b))
slides along the boundary (the bold 0 in Fig. 2(b)), and the mean
value of pixels in the template is taken into the corresponding posi-
tion in a memory. Finally, a new region (Fig. 2(c)) is get after add-
ing up Fig. 2b and the memory. It should be noted not the ap-
proximate coefficient after calculating the mean value of every
region but the labeled image is used in this boundary processing
method, because the mean value of adjacent region could be the
same in the former case. Fig. 2c shows that the pixels in bound-
aries are labeled with the value of the adjacent regions, so the
differences between adjacent regions is more direct and simple
than they are in Fig. 2a.

Roberts operator is used to generate new boundaries. Because
2 x 2 convolution template is used in the operator to take the adja-
cent pixels differences in the diagonal direction to detect the edge,
the gradient detection effect is better and the positioning accuracy
is higher in the horizontal and vertical direction, and there is little
noise impact in boundary processing. The new boundaries will ap-
pear in zero tracks as shown in Fig. 2b, and their routes coincide
with the initial boundaries. In addition, single pixel fracture will
appear in common boundary of three or more regions, which can
be linked through the process as shown in Fig. 3. Fig. 3a is the
endpoint detection template with width of 3 x 3 in which the two
double solid line circles are the existing pixels representing the bro-
ken line with zero direction, dotted line circle indicates there is a
boundary pixel in front of the broken line, the single solid line cir-
cle is the filled boundary pixel, the blank boxes indicate that there
is no boundary pixel there. The template can be adjusted to deal
with the broken lines with 90°, 180°, 270° direction. The boundary

NW! (n,m) = {O if (n,m) belongs to a region border ©) as shown in Fig. 3b is extracted from Fig. 2¢ by using Roberts op-
W) (n,m)  otherwise erator, and the circles is the filled pixels by this way.
91 | 86 |82 | B4 |90 |8 | 0 | O [101]103 | 1 1 1 1 | 00|22 1 1 | 1 1 1 1 21212
88 |87 87888 87| 0 | 0 [111]109 P11 |1{1r|1jolo|2]z2 T O T T O T 0 I 2 A
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8288|000 |00 0114110 1{1]0(0O]O0O|0O]0|0]|2]2 r{ry112121212)12|2]2
93 (87| O | O |108{112|108]102(112|109 1 11010122 |2|2(2]2 | 1 1 2212121222
888 | 0| 0 114/110[107{105] 112|110 1j1|{0|j0|2|2|2|2|2]|2 L1 j2z)2|2|2|2(2]2
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Fig. 2 Processing of boundary
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Fig. 3 Linking of broken boundary
(a) The end point detection template; (b) The boundary

3 EXPERIMENT AND RESULT ANALYSIS

The Experimental data is the Quickbird image has been geo-
metric and ortho corrected with the time of November 21, 2004,
the location of the Jiangning District of Nanjing city Jiangsu prov-
ince China, the size of 1024 x 1024 pixels. There are blue, green,
red, near infrared spectral bands and panchromatic data, and their
spatial resolution is respectively 2.44 m and 0.61 m. To make the
resolution of multi-spectral bands data become 0.61 m after fused
with panchromatic data by using PANSHARP method (Zhang,
2002) respectively. Fig. 4 is a false color image combined of the
infrared, red and green three bands, in which some typical geo-
objects, including road (C1), stadium (C2), water (C3, C4), housing
(C5, €9), farmland (C6, C7, C10, C11, C12), tree (C8) are labeled
with circles and numbers. As the crops have been harvested, the
most widely distributed farmland is of diverse spectral and texture
feature. Housing is concentrated but of various shapes and complex
textures. The up part of road is of outstanding spectral and smooth
texture, but the other part of road and the house roadside are almost
of the same spectral. Water is of monotonic texture but different spec-

False color image

(©)1994-2021 Chmd Academic Journal Electronic Publishing House. All rlghls reserved.

tral feature because of the different substances contained in it. Trees,
houses and water are distributed on the bottom of the image. Experi-
mental platform is the Windows XP operating system, CPU clocked at
2.4 GHz, memory is 2 G, and Matlab programming is used.

3.1 Segmentation using the proposed method

(1) Select the optimal wavelet decomposition scale

Five samples of every geo-object corresponding to twelve
classes are used to determine the optimal wavelet decomposition
scale. Since the maximum decomposition scale J equals 4 (calcu-
lation result of the Eq. (2)), the samples are respectively selected
by adopting templates with width of 4x4, 8x8, 16x16, 32x32
from small scale to large one. Phase congruency gradient for ap-
proximate coefficient of 4 bands at four scales are calculated. The
parameters are set as: wavelet scale » is 5; orientation o is 6 (ViZ

0, % % % 2% %) wavelength of smallest scale filter is three pix-

els; scaling factor between successive filters is 2.1; noise threshold
point 7' is 0.2; cutoff frequency c is 0.05; index for controlling the
sharpness of the transition in the sigmoid function g is 15; ¢ equals
to 0.0001. Fig. 5 is the local gradient variance at the four scales. It
shows that class C7 and C8 are of sustained decline; class C1, C10
and C11 are of sustained increase; class C2, C3 and C5 are of first
increases and then decreases; class C4, C6, C9 and C12 are of first
decreases and then increases. Fig. 6 is the average local variance of
gradient at four scales. The “V” curve indicates the minimum value
is got at scale 2 which is the optimal wavelet decomposition scale.
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(2) Multi-level marker extraction

Gradient images of the four bands at scale 2 are fused using Eq. (3).
As shown in Fig. 7, all geo-objects are clearly outlined. The mean
and variance of this gradient image are 0.2474 and 0.1721 respec-
tively, and the modulation value is set as —0.5, 0.4, —0.3, —0.2,
-0.1, 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5, thus the threshold sequence
0.1614, 0.1786, 0.1958, 0.2130, 0.2302, 0.2474, 0.2646, 0.2818,
0.2990, 0.3162 and 0.3334 is calculated using Eq. (5). It can be
seen from Fig. 4 that the road is of the largest areas and smooth tex-
ture, but the spectral of lower part of road and the roadside house
are almost the same, so the areas of up part of road is 3521 which
set as the maximum marker threshold. Since only the maximum
marker threshold is set, details of geo-objects can appear in the
initial segmentation results, especially the geo-object with complex
texture and surroundings. To establish the “child-parent” relation-
ship and set the correlation threshold 7} as 0.85, then compose
all markers meeting the condition to get the marker image shown
in Fig. 8. It can be seen from Fig. 8 all different sizes geo-objects
are taken into account by multi-level markers. For example, road,
water and farmland which are of monotonic texture and housing,
tree and open space which are of complex texture are all reflected
in marker image. Initial segmentation result of 577 regions at scale
2 is obtained by using watershed transform. The Fig. 9 shows that
watershed lines are congruent with all geo-objects, especially the
geo-objects which are of uniform texture edges such as farmland,
road and water, and the geo-objects with complex texture are repre-
sented by the smaller regions.

7  Gradient image after fusion . o ]
Academic Journal Electronic Publishing House. All rights reserved.

Fig. 8 Marker image

(3) Region merging and result projection

To calculate the boundaries, areas, normalized spectral and
texture feature of regions and implement region merging in accord-
ance with the steps described in Section 2.3. Parameters of Gabor
wavelet are set for the texture feature extraction as y=1, b=1.3, ¢p=0,

GE{E Tnn S—TC,TC}, and 4 taking the first four scales. Consid-
ering the space constraints, the basis of the above parameters set-
ting please refer to the literature (Chen, et al., 2010). Region merg-
ing costs of all adjacent regions are calculated using Eq. (8). The
maximum region areas 7, is set as 380 and the minimum feature
Euclidean distance as 0.35. The former should be set to be small
and the latter to be large in order to promote the adjacent regions
with small areas can be put into merging queue preferentially. As
the texture feature is better than the spectral feature for geo-objects
separating, the weight for spectral feature distance is set as 0.4 and
the weight for texture feature distance as 0.6. Fig. 10 shows the
merging result of 310 regions. From it, we can see that the small
regions corresponding to the geo-object details almost have been
merged correctly. Despite the adjacent regions merging of the same
class (for example, farmland in the lower part of the image and
housing patch above the road) are hindered by maximum region
areas threshold, the result can meet the requirements of image seg-
mentation. Then, according to the method described in Section 2.4,
the merging result in Fig. 10 is projected onto the original image.
As the optimal decomposition scale is 2, only one time projection
is needed. When Roberts operator is used to produce new bounda-
ries, the threshold value is set as 0.000001. The result is shown
in Fig. 11 with the boundaries consistent with Fig. 10.

(4) Computational time analysis

In this proposed method, remote sensing image segmenta-
tion is carried out based on multi-scale decomposition of wavelet
transform, including the multi-scale images representation, image
segmentation, region merging and result projection. Since it is a su-
pervised segmentation method, the whole process requires a small
amount of human-machine interactivity. For instance, the selection
of wavelet decomposition scale requires samples selection in
pertinence, the extraction of multi-level marker needs to consider
the structure and distribution characteristics of geo-objects to set

the modulation and the maximum marker threshold. In the segmen-
http://www.cnki.net
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tation process, the amount of computing will be affected by the size
of image, number of bands and the complexity of image content.
Among them, image size and the number of bands can impact the
computational time for phase gradient and gradient fuse, content of
image can affect the size and number of markers and the number of
adjacent region pairs such several important factors determining the
computation. In addition, the region merging takes up the longest
computational time relatively, but it will be reduced in some extent
by setting the maximum region areas threshold.

3.2 Segmentation based on other method

Jung (2007) proposed an unsupervised multi-scale segmentation
(UMS) method combining the discrete wavelet with the watershed
transform. Segmentation experiments of several natural color
images showed that the results of this method were better than
Statistical Region Merging (SRM), JSEG, Mean-shift and other
methods. Now, UMS method is used for segmentation of the same
remote sensing image. After several tests, the best segmentation
result is obtained with 285 regions when the wavelet decomposi-
tion scale is set as 4 and merger threshold is set as 0.05. As shown in
Fig. 12, geo-objects of concentrated distribution and smooth texture

Fig. 11  The result by our proposed method ) . Fig.
(O)1 994-202T China Académic Journal Electronic Publishing House. All rights reserved.

such as stadium, water, housing, farmland and road are all well
segmented. However, adjacent regions with similar color can not
be distinguished due to spectral is considered only, so large areas
farmlands and broken road appear in the result. In addition, as there
is no restriction on the maximum region areas threshold, one region
may cover several geo-objects in the merging results. The biggest
limitation of the method is, the minimum distance discrimination
method is used to process boundaries for segmentation results pro-
jection, which consequently make the regional boundaries direction
random after times projection. For example, the initial segmenta-
tion boundaries of the water, road and farmland are not maintained
regular in the final results. On the other hand, this method is better
than the proposed one in shape integrity of geo-objects (such as the
patch of houses is totally segmented out), and less computing time
due to the unsupervised segmentation process.

3.3 Quantitative comparative analysis of segmentation

Object-level consistency error (OCE) is introduced as the image
segmentation criteria (Polak, ez al., 2009) to evaluate the segmenta-
tion results of the two methods in quantity. This criterion can detect
the shape, location, size and existence of the segment region, is

Fig. 10 Merged result

Fig. 12 The result by unsupervised multi-scale segmentation
http://www.cnki.net
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sensitive to both over-segmentation and under-segmentation, and
is of symmetry and scale invariance. OCE meet 0<OCE(/,, [) <1,
where 7, is the reference segmentation, /; is the actual segmentation.
If OCE=0, the actual segmentation is the same with the reference
segmentation. Since the remote sensing image used in this paper is
different with its actual ground situation and the image can reflect
the details of most geo-objects with the spatial resolution of 0.61 m,
the reference segmentation image for accuracy evaluation will be
obtained by the visual interpretation. First, reference segmentation
is got by original image interpretation, then the reference segmen-
tation is rasterized, the image with consecutive numbered regions
is obtained finally (Fig. 13). The high-resolution remote sensing
images is of rich details, complex geo-objects relationships, diverse
texture, and the same segmentation method and parameters will
lead different effects for segmenting the different geo-objects, so
differentiated evaluation is necessary. The OCE is based on the
object, so it is feasible to organize the regions into a number of
patches according to the concentrative degree and similarity of
spectral and texture features of geo-objects. It can be seen form Fig. 13

Fig. 13 Reference image for evaluating segmentation

that A, C, E are the concentrated farmland areas with clear outline,
B is the road with clear shape, D is the water, F is the housing,
stadiums, open space, trees and other geo-objects, G is mainly the
water with houses and farmland interspersed, H is the concentrated
housing, I is mainly the farmland with some separate buildings, J is
the diverse geo-objects with complicated relationship.

Table 1 makes comparisons of the two segmentation methods in
the number of regions and the OCE value according to the patches
in the reference segmentation. Since there are segmented regions
across two or more patches, the region number corresponding to
the proposed method is 103 more than its total segmented regions
and UMS is 105 more, which indicates the two methods are of
similar regional duplication degree. Specifically, region number in
the proposed method is less than UMS in the A, B, D, F, G, I and
J patches and more in the C, E and H, which indicates the region
dispersion of UMS is over it in the proposed method. On the other
hand, OCE value in the proposed method is smaller than UMS
in the A, B, E, F, H, I and J patches and lager in the C, D and G
patches, which indicates the segmented regions of the proposed
method is more coincidence with the reference segmentation. For
the road patch B, the segmented regions of UMS are more discrete
than the proposed method. For the water patch D, the segmented
regions of UMS are more concentrated than the proposed method
in which there are segmented regions across two or more patches.
It can be found by combining the region number and OCE of the
F, G, H, I and J patches that although a small region number cor-
respond to a small OCE value, the region number is not positively
corresponding to OCE value. On the whole, the OCE value of the
proposed method is 4.8445 which is 0.2568 less than the value of
UMS 5.1013, indicating that the former can get a better segmen-
tation. It can be known from the comparison of the advantages
and disadvantages of the two methods that small regional dis-
persion, centralized distribution and the exact boundaries is the
outward manifestation of the high segmentation accuracy, while
it is difficult for few segmentation rules to take the geo-objects
of different spectral, texture, shape, size, class in remote sensing
images all into accounts.

Table 1 Comparison of two segmentation methods

A B C D E F G H 1 J
The Region number 14 26 55 8 82 46 48 46 27 61
proposed OCE
method 0.4810 0.4590 0.5231 0.5160 0.4090 0.4605 0.5217 0.4877 0.4733 0.5132
S Region number 20 36 31 21 41 62 52 28 29 70
UM
OCE 0.5009 0.5289 0.5018 0.5014 0.4971 0.5100 0.5060 0.5087 0.4987 0.5478

4 CONCLUSION AND FUTURE WORKS

Watershed transform is combined with discrete wavelet trans-
form in this paper to develop the advantages of multi-scale seg-
mentation, and improvement methods are proposed from different
angles. It is an important prerequisite for the watershed transform
using phase congruency gradient to capture the boundaries ac-
curately. Multi-band information is fully used by fusing the gray
radient of different bands images and multi-scale images are

94-2021 China Academic Journal Electronic Publishing House. All rights reserved.

produced more purposefully by analyzing the local gradient vari-
ance to select the optimal wavelet decomposition scale. When the
minimum local variance is taken as a basis for the optimal scale
selection, the spectral and texture feature at this scale can be more
separable, thus a support for the region merging. To establish the
relationship between the upper and lower markers guided by the
gray correlation is reasonable and the multi-level markers can take
different geo-objects into account, thereby the watershed transform
segmentation effect is improved. The Gabor texture feature, region

areas and spatial adjacency relation of regions are taken as the con-
http://www.cnki.net
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straints to improve the regions merging accuracy. The inverse wavelet
transform has provided a reliable guarantee for the results projec-
tion, and the proposed boundary processing method makes the seg-
mentation results projected to the original image successfully.

Although the experiment results show that the proposed method
can achieve good segmentation results, there are still some inad-
equacies. For example, many parameters are involved in the gradi-
ent and texture extraction and thresholds of markers extraction and
region merging require many times debugging. Further work will
be the analysis of the impact of different parameters on the seg-
mentation results, and the introduction of other technical methods
to further improve this method.
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