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Land cover classification using LiDAR height texture and ANNs
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Abstract: The method of strict slope threshold algorithm is not sufficient to achieve complex object identification or ground

features classification from LiDAR data. In this research, artificial intelligence is used to classify the ground features based on

the LiDAR height texture. Average elevation image, average intensity image and ground roughness index image are derived from

LiDAR points. Then, 4 GLCM texture features including entropy, various, second moment and homogeneity texture are meas-

ured. Finally, BP-ANNSs are used to classify the texture measure into five ground feature types. A coastal area of Zhujiang Delta,

South of China, is taken as the study area. The method employed in this research can efficiently work with single LiDAR data

source and the accuracy of classification result is > 90%, and the classification accuracy of Maximal Likelihood method (ML) is

86.8% for comparison. When the result of ANNSs classification is compared with the result of optical image classification, it can

be found that 76.5% sample points are in accord.
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1 INTRODUCTION

LiDAR (Light Detection And Ranging) is an active remote sens-
ing system that uses the near-infrared laser to measure the distance
between the sensor and target on the Earth surface. LIDAR data is
composed of a mass of discrete points with high density and irregu-
lar distribution. Besides the location information of ground objects,
height difference and 3-dimension features of ground objects can
be derived from LiDAR point clouds directly. The initial tasks of
applying LiDAR data is for fast ground survey as well as to sepa-
rate ground and objects from point clouds and generate the Digital
Elevation Model (DEM) and 3D building models.

In the past decade, researchers have presented many algorithms
to extract the ground objects from LiDAR data. Kraus and Pfeifer
(1998) have used an iterative linear prediction scheme for remov-
ing vegetation points in forested areas. Axelsson (1999) has pre-
sented a self-adaption triangulation network algorithm for filtering
and classification of data points. In these algorithms, the triangu-
lation network or line are constructed inside the points set based
on the adjacent points slope threshold value, and used as a point
clouds segmentation boundary. All the algorithms based on slope
threshold value are exact segmentation measurements at any point
clouds part, and usually employ to generate DEM or Digital Terrain
Model (DTM). However, the exact segmentation measurement can-
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not adapt the complex objects identification because these objects
may be composed by different classes points, and there are always
points which cannot be classified solely relying on the LiDAR data
itself. Therefore, when LiDAR points are used as source data of
land cover classification or complex objects identification, the al-
gorithms based on fuzzy measurement and intelligent identification
tools are needed to cluster and classify the LIDAR points.

In recent years, researchers have brought out a series of LIDAR
height texture measurements. Instead of the model classifying the
points by slope threshold value, height texture measures are eleva-
tion statistics feature of LIDAR points in a floating detecting scene.
Height texture of LiDAR is a fuzzy description of the spatial struc-
ture of elevation and slopes. Maas (1999) has used height texture
for segmentation of LiDAR data. Filin (2002) has proposed a sur-
face clustering technique for identifying regions in LiDAR data that
exhibit homogeneity in a feature space consisting of tangent plane
and relative height difference attributes. Most of the previous work
on height textures classification of LIDAR data has concentrated on
unsupervised clustering which are not effective in complex objects
identification, but it shows that the height textures have potential
capability in fuzzy measurement.

Defining height textures of LiDAR data and choosing textures
identification model are key technologies in LiDAR classification.

And considerable studies have been carried out in recent years.
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Dimitrios and Keith (2007) has presented a multi-scale textured-
based algorithm for object identification and DEM generation from
LIDAR data. Poonam and Tiwari (2008) has applied a knowledge-
based expert system to analysis the LIDAR texture information and
implemented urban buildings identification. Jungho, et al. (2008)
has explored the applicability of high-posting-density LiDAR tex-
ture based on height information and of land cover classification
using machine-learning decision trees. Most pervious researches
focus on one or two typical ground objects identification, or LIDAR
data usually was used as ancillary data to improve land cover clas-
sification accuracy. When LiDAR data used as the sole information
source or applied to land cover classification in complex ground
conditions, classification precision resulting from traditional unsu-
pervised classification method still need to be improved. The rapid
development of artificial intelligence science improve the pattern
recognition technology obviously which have been applied for
remote sensing classification in the past decade (Liu, et al., 2008).
However, the potential and validity of artificial intelligence model
for LiDAR height textures recognition have been investigated rare-
ly. In short, the researches of LiDAR height textures model defini-
tion and of employing stable and generalizable classifiers for height
textures identification are in initial phase.

In this research, we focus on the validity of artificial intelligence
method for LiDAR texture-based land cover classification. This pa-
per presents Ground Roughness Index (GRI) as a new measurement
for LiDAR height textures. Combining the GLCM textures, laser
return intensity data with GRI in a feature space, the height textures
are used for land cover multi-class judgment. Back Propagating
Artificial Neural Network (BP-ANN) is employed as a classifier
because it is capable to approximate any non-linear relationship by
continuous or intermittent signal propagation among the neurons.
BP-ANN can be used to signal processing, model identification as
well as the remote sensing date classification. In this research, pix-
els from 5 land cover classes are sampled from height texture im-
ages: water body, buildings, high trees, bare land and grass ground,
and they are used in BP-ANN training. The precision of LiDAR
data classified by BP-ANN is higher than the result from Maximal
Likelihood classifier (ML). At last, the result of ANN classification
is compared with the result of spectral image classification.

2 METHODOLOGY
2.1 Transfer LiDAR discrete points to height image

It is hard to obtain the textural information directly from LiDAR
irregular discrete points. These discrete points need to be trans-
ferred to surface model for texture measurement. Original LIDAR
data include all the ground objects points, from which the Digital
Surface Model (DSM) could be built. Unlike DEM, DSM is a su-
perposition model of the hypsography and the height of the ground
attachments. In other words, it is a surface model composed of
all the observed subjects. During the transformation process from
LiDAR discrete points to DSM, sample step L is obtained from
the average density of the laser foot points, i.e. L’=S/n. § stands
for area of the whole survey area, and » stands for the number of
the foot points. Since the distribution of the foot points are often
irregular, the number of the foot points in a specific sampling grid
may exceed 1, or equal to 1, or with no foot point at all. In addition,

two types of data are found in LiDAR foot points: elevation and return
intensity data. When the number of the foot point exceeds 1, the cell
values of elevation and the return intensity are the mean values of el-
evation and the return intensity. When there is no foot point in the grid,
the cell values of the elevation and the return intensity are different: the
elevation value is the minimum of the neighborhood, and the intensity
value is zero. Therefore DSM can be obtained when the grid takes the
value of the elevation and then the height image (depth image) could
be derived from DSM. Likewise, the intensity image is obtained when
the return intensity value is assigned to cells.

2.2 Texture measurement

Height texture is texture measurement of LiDAR height image.
Height texture is also the major information of LiDAR land cover
identification. Alongside the height textures, the value of mean re-
turn intensity and mean height are also seen as the features used in
land cover classification.

2.2.1 Height textures based on the GLCM

Grey-Level Co-occurrence Matrices (GLCM) also is used in this
study, which is based on brightness value spatial-dependency (Haralick,
et al., 1986). GLCM is a probability matrices of pixel grey levels oc-
cur in a detecting scene. The GLCM textures have been widely used in
remote sense image segmentation and object identification (Franklin,
et al., 2001). Companying with last return information, 5 from all 14
GLCM textures were used to ground object identification from LiDAR
height image by Jungho, ez al. (2008). In this study, 4 GLCM textures,
including Homogeneity (), Various (V), Entropy (£n), and Second
Moment (4SM), are employed as ground features for classification. As
well as, Means gray value (M) is calculated as a texture measurement.
Table 1 demonstrates the methodologies of GLCM textures measure-
ments employed in this paper.

Table 1 Texture measure methodologies

Metric Equation Description
M=mean DN value
n)—M)>
Various V= M of floating detect-
n-1 ing scene
R ASM is the depic-
Second mo- ASM = ZZ[p(n)] tion of the height
ment i texture distribu-
tion
En indicates varia-
Entropy En= 722 p(n)lg p(n) tion of height in a
i

detecting scene

H weights the
values decreasing
exponentially ac-
cording to their
distance to the
diagonal

i 1 p(n)
Homogene- ry —
ity Z; [1+(i—j)2]ZZp(n)

Note: p(n) = the DN value of pixel, and i, j = the number of rows and col-
umns.

2.2.2  Ground roughness index

LiDAR data used in this research only has single return record.
For the purpose of measuring the globe height statistic feature, we
propose Ground Roughness Index (GRI, C,) which defined by the
area ratio of the DSM and DEM in a detecting scene:
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where 7 is the total grid number in a detecting scene, S;psy, Sipev are
area of DSM and DEM in grid i.

In our experiment, the detecting scene use 7x7 volume, and
n=49. DEM is derived from ground points which segmented from
LiDAR point clouds by self-adaption triangulation network algo-
rithms (Axelsson, 1999). When C,,is used as a height texture meas-
urement for ground identification, its operational reliability depend
on the precision of DEM. Based on our experiment, the precision
of DEM is enough when the ground points come up to 10% in
whole LiDAR points in flat area. Fig. 1 is a sketch map shown the
relationship between DSM and DEM section. The value of GRI
could be approximately interpreted as the length ratio of DSM and
DEM line segment in sketch map.

vertical direction

DSM

‘DEM

Horizontal direction

Fig. 1 DSM and DEM section

C, is insensitive to ground repetitive structure and detect-
ing direction, but the hypsography and the height changes of
ground attachments have an effect on the value of C, obviously.
It can be seen from formula 1 that the height change of land
cover, such as buildings, trees, is the main factor of GRI because
DSM overlaps above the DEM. In fact, bigger the hypsography
changes and height changes are, greater the area of DSM is, and
greater the value of C, is. So, the type of land cover or ground
objects can be identified according to the C, value. For exam-
ple, while the trees and buildings have similar height changes,
the C, value of woodland is greater than the C, value of build-
ings because only few LiDAR points falling on the ground gap
between trees will increase the area of DSM obviously. So, we
can distinguish the buildings from woodland by C, value. While
woodland and grassland have similar undulate distribution on
the ground, the C, value of woodland will greater than the grass-
land because trees have greater height change. Therefore, C, can
be interpreted as a ground feature of total height changes meas-
urement, and can be used to land cover classification.

2.3 Land cover classes

The classes of land cover are persetted according to the separa-
bility of height textures. LIDAR data is a kind of elevation records
about ground or ground attachment. Elevation value or height dif-
ferences are the main information applied to land cover classifica-
tion. Though there have return intensity records in LiDAR data,
the intensity data cannot be used as sole information source for

land cover classification because of its low radiation and spectrum
resolution. Therefore, land cover classes should be discernible on
height features firstly, and return intensity records are used only
as secondary basis. So, 5 classes of land cover in study area are
chosen mainly based on the height features: water body, buildings,
woodlands (high trees), bare lands, farmlands (or grasslands). In
these classes, buildings usually have relatively great height and
low GRI value, high trees or woodlands have similar height with
buildings but great GRI value. Both of the height value and GRI
value are low in bare land and middling in farmlands. Water body
is always on lowland with low return intensity. All these features
can be discerned from height textures and used for land cover clas-
sification.

2.4 BP-ANN work models and process

Artificial Neural Networks (ANNs) are a functional abstrac-
tion of the biologic neural structures of the central nervous system.
ANNSs are trainable architecture and are operated as black-box,
model-free, and self-adaption tools for learning knowledge form
the sample-training. They are powerful pattern recognizers and
classifiers. Using neural network, the detection rule of object can
be derived from high-dimensional feature space. During the past
decade, ANNs have been wildly used in remote sensing applica-
tions, especially in the field of image classification (Minh, et al.,
2005). Back Propagation algorithm is a machine learning technol-
ogy widely applied in multilayer feed forward network. Steepest er-
ror descent method is used to modify the weight coefficient and to
improve the accuracy of solution in BP algorithm. This algorithm is
stable, fault tolerant and robust, and it is capable for LIDAR height
texture identification.

BP network is composed of input layer, hidden layer and output
layer. While in one loop of training process, the sample data, com-
ing from input layer and then going through hidden layer, arrive to
output layer at end. Nerve cells in input layer and hidden layer only
have influence on the next layer. The errors which are the devia-
tion between truth value and working value are calculated in output
layer. Then, errors signals are propagated backward alone the cell
connection, and steepest descent method is used to modify weight
coefficient between the nerve cell one by one. Repeat this loop, and
stop iteration till the errors descent to a predetermined threshold
value. Classifying rules has been built after training. The function
of nerve cell in hidden layer and output layer could be expressed as
follow (Qing and Lu, 2000):

Given x; is the input value on 7 input cell, the output value of the
cell j in the hidden layer y, could be expressed as follows.

Y =f(Zngi+0/.j @

where W is the connect weight coefficient between cell 7 in input
layer and cell j in the hidden layer, 6, is the threshold value of the
hidden cell j. Transfer function used in nerve network is Sigmoid
function and is expressed as follows.

f(x) = 1/(1 + exp(—gio)) ®

where 6, is used to adjust the sigmoid function. And the output of
cell k£ in hidden layer (O,) can be expressed as follows.
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0 = /(X +oy) )

where V; is weight coefficient between the cell j in hidden layer
and cell & in output layer, o, is output value of cell & in output layer.
Steepest errors descent method is used to estimate and modify
weight coefficient matrix. Learn ratio of ANN is given by user. Er-
rors function ¢ can be expressed as follows.
1L &
£==22(0,~T,) )
2T3S
where O, is the actual output. 7}, is the desired output. P represents the
number of output cells. N represents the number of samples.
Fig. 2 show the flow diagram of the methodology used in the study.

LiDAR
point clouds

DSM Height Return intensity
image image

GLCM textures:
*Various(V)
*Second Moment (ASM)
*Entropy(En)
*Homogeneity(H)

[

Mean return

Ground . .
intensity

Roughness
index

‘ Mean height H

Land cover
classification

Fig. 2 Workflow used in study

3 EXPERIMENTS
3.1 Study area

In this study, we are focusing on a 3.5 km” coastal zone in Zhu-
jiang Delta, South of China. Study area is local in a fame belt with
in general less 2 degree terrain variance. A small village is in north-
west corner of study area. Common height of buildings is less than
10 m; the height of high trees is similar with buildings and overlay

with buildings somewhere. Water body includes several ponds and
a creek with obvious stream ditch. Bare land, grass land, cropland
and dwarf shrubbery can be found in this area also.

3.2 Data process

LiDAR data were collected on November 14, 2006 using Leica
Airborne Laser Scanner 50 sensor. The LiDAR operated at near-
infrared spectrum with first return record, the average sampling
distance among footprints is approximately 0.78 m. Max altitude
difference is 13.16 m among whole points, and the elevation of
94% points is less than 6 m. Coordinate has been provided in UTM
projection with an absolute accuracy of < 0.8 m in the x and y di-
rections, and < 0.15 m in the z direction. Reflect intensity of returns
is recorded as 10 grades also. Using TerraSolid software, LIDAR
points are segmented into two parts: ground points and non-ground
points by slope threshold at 2 degree iteration angle. DEM and
DSM are generated respectively from ground points and whole the
points with 0.8 m grid. TerraScan software is used to transfer grid
to grey images respectively according to the elevation value and
reflection intensity value. Then, these gray images are stretched to
256 gray scales and shown as Fig. 3.

(a) (b)

Fig.3 Grey images derived from LiDAR data
(a) Height image; (b) Return intensity image

After a number of experiments, 7x7 detecting scene is chosen with
the best performance in following classification. The area of one scene
is 5.6 mx5.6 m in actual ground, similar with or little smaller than the
area of buildings. 4 GLML height texture measures are calculated fol-
lowing the Table 1. Ground roughness can be obtained from formula 1.
Images of the 4 GLML textures and GRI are shown in Fig. 4.

(d) (e)

Fig. 4 Height texture measures
(a) Entropy(En); (b) Hernogeneity (A1), I(¢) Secend Moment; {d) Variats (/) (e} GRI(C,)
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3.3 ANNsS training

A 3-layer BP-ANN are established. The software is developed by
C#. 4 GLCM height textures, mean intensity, mean elevation and GRI
are obtained. These 7 textures are inputted into the corresponding 7
neural cells in input layer. There are 4 cells in the hidden layer and 5
cells in output layer. The cell numbers of hidden layer are determined
by experience. The cells number of output layer is corresponding to 5
target classes. Balance samples are applied for the training, which re-
quires similar number of samples in each class. The average deviation
is 1.96, showing good separability of samples. In the BP-ANN, Sig-
moid function is used, with a training ration of 0.1. Train the network
with training data set. And then the working data sets are inputted into

network for classification after training.

4 RESULTS AND ANALYSIS
4.1 Results

The classification is shown in Fig. 5(a). The confusion matrix
for classification error is shown in Table 2. The total accuracy
of the classification is 90.22%. The most classification errors are
found with the building class with an accuracy of 79.6%. 100%
classification precision is achieved in bare lands and water body
classes, due to the low altitude of water and the least terrain var-
iations of the bare land. Furthermore, eyes judgment can tell that
the classification errors are shown mainly in the top-left of map,
where buildings and woodlands are mixed. The buildings in the
region are mostly low, detached houses with similar height of
the woodlands. Therefore the texture measurements are similar,
especially on edges of object, and easily confused by BP-ANN
classifier. The sparsely distributed grasses along the creek are
identified as bare lands. Streamlet where is shallow and slight
shape cannot be detected in a complete detecting scene. There-
fore, these kinds of patches cannot be identified correctly. Other
large water body can be effectively detected by height textures
and return intensity data.

Maximum Likelihood (ML) classifier is also employed
to classify the same region (Fig. 5(b)). Confusion matrix for
classification errors are also worked out (Table 3). It can be
seen that both methods can provide satisfactory classifica-
tion results. The classification precision of BP-ANN for total
validation samples is 90.25%, 3.5% higher than that of ML
(86.75%). The Kappa of BP-ANN classifier is 0.877, also
higher than that of ML method which is 0.832. Besides, the
land cover patches obtained from ML classifier, especially
where the buildings-woodlands and the grasslands-bare lands
interleaving are more fragmented than the patches obtained
from BP-ANN. it shows that BP-ANN has better performance
in multi-attributes analysis and has stronger generalization abil-
ity. According to Fig. 2 and Fig. 3, the numbers of misclassified
samples among classes are significant different in different clas-
sifier. Both classifiers show the least classification precision in
buildings due to the overlaps of buildings and woods, and their
similar heights. The accuracy of BP-ANN in buildings class
achieves 79.6% while ML is only 22.22% which can hardly
been regarded as valid identification. BP-ANN, with almost all
the misclassified simples on buildings classes, has achieves the

accuracy of 72.3 % and 97.4% in woodlands and grass lands re-
spectively, slightly lower than that of ML classifier. In general,
compared to ML classifier, BP-ANN model is capable in stabil-
ity and fault tolerance, and thus fits in better with the LIDAR
height textures classification.

Table 2 BP-ANN classification confusion matrix

Buildings Water body Woodlands Grasslands  Bare land

Buildings 43 0 18 2 0
Water body 0 46 0 0 0
Woodlands 8 0 47 0 0
Grasslands 3 0 0 76 0

Bare land 0 0 0 0 74

Total 54 46 65 78 74

Note: Total accuracy: 90.22%, Kappa=0.877

Table 3 ML classification confusion matrix

Buildings Water body Woodlands Grasslands  Bare land
Buildings 12 0 0 0 0
Water body 0 46 0 0 0
Woodlands 35 0 65 0 0
Grasslands 7 0 0 78 0
Bare land 0 0 0 0 74
Total 54 46 65 78 74

Note: Total accuracy: 86.75%, Kappa=0.832

4.2 A comparison between LiDAR height image
classification and ALOS image classification

LiDAR land classification mainly bases on the height variance
of land objects. But both the radiation resolution and spectral reso-
lution are low in LiDAR data. Most of the laser receiver including
ALSS50 sensors can only have several radiation flux grades and
sole spectral band (In this research, there are only 10 radiation flux
grades). The original reflection data cannot be used to segment the
point clouds directly. At present, traditional multi-spectral image is
the major means in remote sensing survey. In real work, LiDAR is
often used as a complement or reference to multi-spectral remote
sensing data. Thus, we also use multi-spectral image to classify the
land covers of the same region, and a comparison is made between
the two results.

ALOS image of the region is chosen. The data is collected
two months later than the LiDAR data. ALOS images are ob-
tained using ALOS AVNIR2 and PRISM sensor. 4 band multi-
spectral images and panchromatic image are used with resolu-
tion of 10 m and 3 m respectively. Borvey fusion method is
used in data fusion with the best visual results and identifying
accuracy (Liu, et al., 2008). After resampling the image with
0.8 m, ALOS image is classified by ML classifier. And the result
is shown as Fig. 6.

Total 500 pixels (every 100 pixels in each class) are chosen
from LiDAR classification result randomly and checked their class-
es in ALSO classification image. We contrast classification results
from ALOS and LiDAR data, shown as error confusion matrices in
Table 4. It can be seen from Table 4 that classification errors occur
in each two classes. A total of 264 pixels with accuracy of 52.8%



544 Journal of Remote Sensing  # & 54k 2011, 15(3)
Table 4 Classification conformity of ALOS image and LiDAR height image
LiDAR height image classification
" Conformity / %
Buildings Wood lands Grass lands Bare land Water body vegetation
Buildings 23 4 11 18 4 15 23
X ‘Woodlands 40 67 17 11 5 . 67
ALOS image 153

classification Grasslands 24 15 54 6 9 54
Bare land 8 11 16 61 23 27 61
Water body 5 3 2 4 59 5 59

x composed by grasslands and woodlands class

= the number of vegetation samples is 200,with 76.5% conformity

[ Buildings
I Woodlands
I Grass lands
[ Bare land
Il Water body

Fig. 5 Results of classification
(a) BP-ANN classification; (b) ML classification

are the same classes in both image. Except buildings, about 60%
conformity obtained in all other classes. Comparing Fig. 5(a) with
Fig. 6 by eyes judgment, classifying confusion almost distributes
between the classes of buildings and woodlands on the up-left
corner of the map. According to our field survey, the buildings and
trees there have similar height and overlap each other, there are
large numbers of mixed pixels in the conditions of ALOS image’s
lower resolution than LiDAR height image’s, which could cause
classifying confusion obviously.

It is notable that the classifying conformance of the two data
source has connection with the presetted classes. For example, it
is hard to take the dwarf shrub, woodland and grassland apart from
spectral image because all they are vegetation with similar reflec-
tion spectrum. However, when combining them into the class of
vegetation, 76.5% pixels of vegetation identified from LiDAR data
and ALOS image are in accord. Besides, the hard bare ground or
road, which cannot be segmented in LiDAR data, can be identified
in spectral image.

Furthermore, LiDAR data resolution and physical mechanisms
of LiDAR scanner is different from spectral data. The classes cho-
sen in advance and classifying strategy have significant influence
on results of classifying conformance. A suitable ground conditions
and classification schema is needed in this experiment. It is pos-
sible that the results of classifying are not comparable entirely in
different conditions. This experiment is designed to test validity
of LiDAR classification. However, the rational aims using LiDAR
data and spectral data together usually are to enhance the image
understanding and to improve classifying precision, but not only to
obtain results with high conformity.

I Buildings
I Woodlands
I Grass lands
[ Bare land
I Water body

Fig. 6 Classification result of ALOS image

5 CONCLUSIONS AND DISCUSSION

(1) LiDAR point clouds provide information in eleva-
tion, height difference and reflection intensity. In this re-
search, discrete points are transformed into height images
and intensity images. Classification rules are drawn from the
height textures by using the image segmenting techniques.
The main information used in height textures classification
is the same with the information used in vector point clouds
segmentation. Both employ the height difference data of the
foot points. Yet, the height textures are more fault tolerant
and fuzzier in feature measurement, it is better for complex
land cover identification. In the research, ground roughness
index (GRI) and the return intensity offer assistant informa-
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tion for classification. Experiments show that by using height
textures, return intensity and ground roughness index, effec-
tive identification and classification of land cover can also be
achieved without other data source.

(2) LiDAR height texture is more effective in land cover
identification than height variance taken directly from dis-
crete points. Besides, the features of the land cover shown
in height textures are more distinct and comprehensible than
that shown in discrete point clouds. ANNs is an effective tool
in land cover classification form LiDAR data by seeking the
rules in high dimension feature space. And in our experiment,
ANNSs has higher classification precision than MI classifier.
Artificial intelligence model can achieve better performance
than traditional model in height texture identification.

(3) When comparing the results of height texture classi-
fication and the spectral data classification, it can be found
that the conformity of classification is between 23% and
67%, with the total conformity of 52.8%. Therefore, it can-
not be used as direct reference to each other. However, when
woodland and grassland are combined into one class, vegeta-
tion, a higher conformity (76.5%) is found (Table 4). Taking
the difference of image resolution into consideration, higher
conformity is possible. And, the two classification results are
comparable when designed classes and classifying strategy
are suitable at same time for both LiDAR and spectral data in
land cover identification.

(4) Since height variance of the ground is the main infor-
mation of LiDAR, the classes presetted must be classifiable
in elevation or height difference. Ground prior knowledge
is also implicit in LiDAR texture based classifying strategy.
The study area of this research is small, and the ground struc-
ture is simple. It is easy to choose classes in advance only de-
pending on experience. But in conditions of complex terrain
or complex ground attachments, or the researchers lacking
of ground knowledge, significant errors are to be expected.
Object-based technology and other intelligence models have
the potential to reduce these errors in LIDAR height texture
identification, which can be the field for further research.
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