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Abstract:

This paper proposes a new unmixing method based on the simulation of real scenario. Fractions of the components

are firstly obtained through the real scenario simulation. Then reflectance values of the endmembers (simulated endmembers)
are calculated by combining the image reflectance values and corresponding simulated fractions. A constrained linear model is
finally used to unmix pixels based on the simulated endmembers. Comparative analysis of the different endmember extraction

methods, such as simulated endmembers, image endmembers, and reference endmembers, indicates that the simulated endmem-

ber method has the highest estimation accuracy and robustness for the crown closure of moso bamboo. The advantage of the real
scenario simulation is to use field data as a priori knowledge for endmember extraction and introduce a three-dimensional simu-

lation model into a two-dimensional linear spectral decomposition.
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1 INTRODUCTION

Remote sensing image, as a common information carrier,
represents land cover attributes within pixel units. A variety of
surface components or different states of surface component
have significant impact on the information acquired by remote
sensing images in pixel scale, which are known as mixed pixels.
It not only influences the accuracy of land cover classification,
but also strongly hinders the development of quantitative re-
mote sensing (Yang et al., 2008). Corresponding unmixing
methods are proposed for mixed pixel issues (Ichoku & Kar-
nieli, 1996; Roberts er al., 1998). Zhao (2003) summarized
different spectral mixture analysis methods including linear
model, geometric optics model, random geometric model,
probability model and fuzzy model.

Endmember quality is the most important factor that affects
the results of spectral mixture analysis (Zhao, 2003). At present,
there are two main methods for endmember extraction as
following:

The first one is image endmembers method, which deter-
mines endmembers from remote sensing image through differ-
ent analytical methods. This method is commonly used in many
studies and does not require field spectral measurements and
prior knowledge (Woodcock et al., 1994, 1997; Scarth & Phinn,
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2000; Franklin & Turner, 1992). However, one issue existing in
unmixing process is that pure pixels in remote sensing image
often can not be found (Tompkins et al., 1997; Tao et al., 2008).
For example, Li (1985, 1986, 1992) proposed the famous geo-
metrical optical model, which included four components, such
as sunlit vegetation, shadowed vegetation, sunlit background
and shadowed background. In practice, full pure pixels of the
four components are not within remote sensing images. Clean
and deep water is often used to replace shadowed components
(Hall et al., 1995) or relatively pure pixels are collected from
two-dimensional scatter plot of the brightness and greenness
components derived from Tasseled cap transformation (Li &
Strahler, 1985; Woodcock ef al., 1994, 1997). Therefore, image
endmembers method is difficult to represent real attributes of
land cover.

The second one is reference endmembers method, which
determines endmembers using field spectrum measurement or
spectral library (Rashed et al., 2003). Characteristics of ground
objects can be more accurately represented by Reference end-

members in theory but remote sensing images are affected by

the atmosphere, terrain, sensors, and many other potential fac-
tors. It is also difficult to represent spectral characteristics of
ground objects in remote sensing images. In addition, reference
endmembers can only represent a certain category of ground
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objects’ reflectance. High error or mistake will result from
some kinds of endmembers loss in application.

Three-dimensional modeling of vegetation has been widely
used in agriculture, forestry, ecology, remote sensing and many
other fields (Guo & Li, 2001). Disney (2000) summarized
many generating scenarios methods applied in remote sensing.
With rapid development of computer technology, graphics al-
gorithms, and emerging of three-dimensional measurement and
modeling of vegetation (Prusinkiewicz, 1998), universal models
for variety of situations continue to be developed (Liang, 2009).
Model accuracy will be improved by more accurate simulation
of vegetation canopy, however, the biggest obstacle of the
stand-scale scenario details simulation is so many facets in
scenario that causes time-consuming for computer calculation
(Lei et al., 2006). A simplified model has been used in many
studies, and produces good results (Morsdorf et al., 2004; Li &
Strahler, 1985, 1986).

The sensor acquires sunlight reflection from four compo-
nents in real forest scenario as mentioned above. Due to the
disadvantages of the image endmembers and reference end-
members, this study simulates the real scenario of moso bam-
boo forest based on the simplified vegetation model. Fractions
of the four components are obtained from simulated scenarios,
and the reflectance of four components is inverted based on
least squares method (simulated endmembers, the same below).
Finally, fractions of non-modeled pixels are estimated using the
fully constrained least squares linear spectral analysis method
with simulated endmembers. In order to evaluate the three
methods, such as image endmember method, reference end-
member method and simulated endmember method, a compara-
tive analysis of the different unmixing results is proposed. This
study provides a new way of thinking, a new method for spec-
tral mixture analysis, and a new technology for accurate re-
trieval of vegetation biophysical parameters from remote sens-
ing data.

2 RESEARCH METHODS

2.1 Plot data collection and remote sensing image
preprocessing

Anji County, located in Zhejiang Province, China, was se-
lected as the study area, and the field work has been conducted
during 19 August and 3 September 2008. A total of 55 moso
bamboo sample plots with the size of 30 mx30 m per plot were
allocated. The survey items in each plot included diameter at
breast height (DBH), stem density and the coordinate of plots.
The clown closure was measured by forestry experts in Zheji-
ang Agricultural and Forestry University and professionals in
Anji country forestry bureau based on visual method described
in the “Forest resources investigation and technical regulations”
issued by State Forestry Administration in 2003. The relative
errors of crown closure are less than 10%. The spectral reflec-
tance of four components of moso bamboo forest was deter-

mined by the average values of several measurements using the
ASD spectrometer on September 6, 2009. Because of the same
season between spec- tral measurement and field investigation,
the hyper spectral reflectance can well represent the character-
istics of four components of moso bamboo forest.

The height and stock height were calculated using the model
established by Zhou (1981), and the crown diameter was calcu-
lated according to references (Zhou, 1982). The correla- tion
coefficient between estimated and measured (September 30,
2008) crown diameter is 0.88. These attributes were used as
parameters of scenario simulation.

Landsat Thematic Mapper (TM) image acquired on July 5,
2008, was used in this study. This TM image was rectified by
using control points taken from 1:50000 topographic maps,
with the root mean square errors (RMSE) of 0.29 pixels. The
Fast Line of sight Atmospheric Analysis of Spectral Hyper-
cubes (FLAASH) module in ENVI 4.4 software was used to
conduct radiometric and atmospheric calibration for this TM
image.

2.2 Linear mixture model

Linear mixture model supposed that the spectral response of
mixed pixel is assumed to be the linear combination of the con-
stitutional pure ground objects’ signature and their ratios re-
spectively. The spectral signature of a mixed pixel can be rep-
resented by the linear regression model as follows.

n
fi:Z(aijxj)‘*‘ei (1)

Jj=1
where a;; is the reflectance of component j(j=1, 2, , n) in band
i; x; is the area ratio of component j in the pixel; e; represents
Gaussian noise of band i. In order to make the linear mixture
model more precise and scientific to describe mixed pixels, the
Sum-to-one constraint and the Non-negative constraint must be

imposed on the linear mixture model, which are expressed as
follows.

ix_, =1 )

J=1
x; =0 3)

2.3 Image endmembers

The pure spectral pixels are found in TM image using the
Pixel Purity Index (PPI) method (Boardman ef al., 1995). Then,
combined the original remote sensing image, the endmembers
are collected from the N-dimensional scatter plot based on PPI.
The optimal endmember of each component is determined after
repeated experiments shown in Fig. 6 (a).

2.4 Reference endmembers

The hyper spectral reflectance of four components of moso
bamboo forest is measured using the portable ASD instrument,
such as sunlit canopy, shadowed canopy, sunlit background and
shadowed background. The measured spectral reflectance
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(Fig.1) is re-sampled and matched with the TM bands (TM1—35,

TM7) based on the TM spectral response function as shown in
Fig.6 (b).
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Fig. 1 Measured hyper spectral reflectance

In order to make the reference endmembers effective in
pixel scale (Li ef al., 1999), this study proposes the following
assumptions according to the previous studies (Li et al., 1999;
Raffy, 1994): there is no topography in pixel scale and the
vegetation distribution patterns in pixel as same as the
sub-pixel.

2.5 Scenario simulation and simulated endmembers

Firstly, 9 plots are randomly selected from 55 plots as the
scenario simulation samples. The virtual three-dimensional
scenario models are created using ground data (including plot
orientation and slope information) and crown parameters of
moso bamboo based on 3DMax9 software. In order to reduce
the pieces in scenario models in pixel scale, the geometry of
moso bamboo is simplified and the background of plot will be
supposed as plane in this study. Then, according to certain solar
height and azimuth information obtained from header file of
remote sensing image, the shadow of ground objects is created
using simulated sunlight in scenario. Four components fractions
of simulated plot are calculated with top view (the same as TM
sensor). Finally, combined the corresponding pixel reflectance
and fractions of four components as shown in Eq.(4), the end-
member reflectance of each band is estimated using least square
method.

A4=x" X)X F, @
where A; is the endmember reflectance vector of band i, F; is the
reflectance vector of band i for n pixels, X is the fractions of n
pixels. Because this study sets plot group as 4, so Eq. (4) has
well-posed or over-determined least squares solution when n=4.

Each moso bamboo in 9 scenario samples is simplified as a
simple geometry described as “stick” and “capsule” (Fig.2)
according to the crown diameter, stick height, and height de-
rived from DBH. Because there are too many culms per unit
area (usually 150—500 culms/900m?) and it is difficult to

measure the location of each moso bamboo in dense forest, the
coordinate of each moso bamboo in plot is not measured in this

study. To solve this problem, each moso bamboo model is ran-
domly located in scenario. The scenario model described above
is established as shown in Fig.3. Each moso bamboo model is
randomly located 10 times for No.2 sample. The results indicate
the fractions range from 2% to 7% (Fig.4). Therefore, location
of moso bamboo in plot has insignificant

Fig.2 Simplified bamboo model

Fig. 3 Scenario component model
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Fig.4 Randomly location assignment experiments of
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effect on the fractions of four components. Any experiment for
No.2 sample can be used to test scenario simulation method.

Fig.5 is the top view image of No.2 sample at the 5" ex-
periment, and it is easy to distinguish sunlit canopy, sunlit
background and shadowed components from Fig.5(a). Fig.5(b)
is the top view scenario model with no light source, and vegeta-
tion and non-vegetation can be easily distinguished. The four
component fractions of sampling plots can be calculated based
on the classification results of Fig.5(a) and Fig.5(b).

Due to clear edge problem of the simulated scenario, the illu-
mination side of the sample plot has too much light back- ground

and many of the crowns are beyond the plot boundary (Fig.5). In
order to eliminate edge effects, the edge must be corrected to im-
prove simulation results. This problem has been discussed (Li &
Strahler, 1985). According to linear spectral mixture theory and the
central 50% square area of image is unaffected by edge, this study
only calculated the four components fractions using central 50%

square area of top view image (Fig.5).

Total 9 randomly selected sample plots are established using
scenario model, and fractions are determined through scenario
simulation. The endmember reflectance is calculated using

Eq.(4) (Fig.6 (¢c)).

(b)

Fig. 5 Top view image of simulated scenario in 5™ test of No.2 sample
(a) Top view scenario model with light source; (b) Top view scenario model with no light source
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(a) Image endmembers; (b) Reference endmembers; (c) Simulated endmembers
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2.6 Accuracy assessment method

Crown closure equals to the sum of sunlit canopy fraction
and shadowed canopy fraction in top view image (Woodcock et
al., 1997). In this study, the spectral decomposition accuracy is
assessed by comparing the measured crown closure with the
estimation results using three types of endmembers.

3 RESULTS AND ANALYSES

3.1 Relationship between simulated and measured
crown closure

There is a good linear relationship between simulated values
and measured values for 9 samples’ crown closure (Fig.7). In
the case of medium crown closure (0.5—0.8), the simulation
results are quite good; in the case of crown closure greater than
0.8, the simulated crown closure are slightly lower than the
measured values. With the increase of crown closure, the
crowns will overlap or fully overlap because of the randomly
setting of coordinates (Chen & Leblanc, 1997).
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Fig. 7 Relationship between measured crown closure and
simulated crown closure

3.2 The reflectance of the three types of endmember

The slightly differences between reference endmembers and

image endmembers indicate that the field spectrum data without
scaling can be better expression in the pixel scale (Fig.6). Ref-
erence endmembers of shaded canopy has a low reflectance in
all bands because much sunlight is covered by shadow in the
field measurement which causes the reference endmembers
sharply decrease, especially for TM4.

The simulated endmembers has noticeable difference with
other two. The sunlit canopy reflectance of simulated endmem-
bers theoretically represents the canopy under sunlight with
100% crown closure. With the increase of leaves, TM reflec-
tance of each band increases (Xu et al., 2005), so the reflec-
tance of simulated sunlit canopy very high. There are the same
spectral characteristics of shadowed canopy between simulated
endmembers and image endmembers, and both of them better
represent the characteristics of vegetation. It is different
between the sunlit background of image endmembers and ref-
erence endmembers which represent soil characteristics. The
shadowed background of simulated endmembers shows vegeta-
tion characteristics. Meanwhile, because the shadowed backg-
round includes understory vegetation, litter, and many other
factors, the shadowed background of simulated endmembers

shows vegetation characteristics.

3.3 Accuracy assessment of spectral decomposition

The spectral decomposition results are assessed using the
measured crown closure of 55 plots. The linear relationship
between measured value and predicted values from image
endmembers and reference endmembers are poor (Fig. 8). Ma-
jority of crown closure is overestimated with the relative error
over 40% (Fig.9). A comparison analysis of the three types of
endmember indicates that the image endmember method and
reference endmember method overestimated the crown closure
as they underestimate the endmember of sunlit canopy. The
linear relationship between measured and predicted values us-
ing simulated endmembers is better than those using the other
two endmembers (Fig.8(c)). The estimated error of crown clo-
sure (<10%) is acceptable (Liu & Wu, 2005), and Fig. 9 indi-
cates only few plots’ error beyond this range.
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Fig. 8 Relationship between measured and simulated of crown closure for the 55 plots
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Fig. 9 Relative error between simulated and measured crown
closure for the 55 plots

3.4 Experiment

In order to further compare the effect of three different
methods, a large moso bamboo forest area selected from TM
images (196 rows, 172 columns) was tested. This study area
contains a small amount of roads and towns and does not in-
clude any scenario modeling samples.

Sunlit background Shaded background

Reference endmemb er method Image endmemb er method

Simulated endmember method

Fig. 10 is the spectral decomposition results of the study
area using these three unmixing methods. Because the two
background fractions in moso bamboo area are close to 0 and
the difference between the two canopy fractions in shady slope
and sunny slope are exaggerated, the estimations from image
endmember method are obviously discrepant with observations.
Sunlit canopy fraction of reference endmembers is close to
100% while the other three fractions are close to 0. The fraction
of sunlit canopy is overestimated, and the other three fractions
are underestimated. Compared with the other two methods, the
fractions from simulated endmember method are reasonable
and uniformly distributed in image, which is consistent with the
characteristics of moso bamboo forest (Zhang et al., 2007).

The crown closure distribution and its histograms from dif-
ferent methods are shown in Fig.11, which further explain the
results from numerical aspects. Compared with the measured
crown closure, the estimation of image endmember method are
overestimated. The distribution of estimations from reference
endmember method has a huge different with measured values.
The results of simulated endmember method are similar to the
measured values, which further explaines that it is superior to
the other two methods.

Sunlit canopy Shaded canopy

Area ration

Fig. 10 Image decomposition result based on the three endmember
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4 DISCUSSION

4.1 Scenario simulation and accuracy assessment

Fractal method and computer graphics method were widely
used in vegetation three-dimensional modeling and achieved
very good results (Garcia & Sommer, 2006; Disney, et al.,
2006). However, how to optimize the number of pieces in
stand-scale scenario is an urgent problem. Taken this study as
an example, the scenario model can be simplified according to
the real needs and research target in practical applications. It
not only saves a lot of time and space, but also helps to discover
the mechanism and nature of the problem. Therefore, the sce-
nario simulation introduces the simplified vegetation model and
achieves good results.

In this study, although the scenario simulation achieved good
results, there is still some issues worthing of being explored.
Firstly, there needs a lot of ground field data and crown pa-
rameters as prior knowledge for scenario modeling, and how to
extract useful information from the prior knowledge as a basis
of the simplification should be investigated. Secondly, the error
sources in the process of scenario simulation should be ana-
lyzed. The accuracy of simulated endmember method is the
highest compared with the other two methods (Fig.7), but the
correlation coefficient is small (R*=0.205). The estimated errors

of some sample plots from the three methods are very high. The
reason why those samples in high error should be analyzed
before those excluded to improve accuracy. In addition, the
background of plot is supposed to be flat in this study, because
it is difficult to simulate the ups and downs in plot and its
shadow. Although terrain of plot (30mx30m) slightly changes,
it may still be part of the error sources of simulated endme-
mbers. Finally, more attention should be paid to the quantity of
sample plots of scenario modeling in future research. Only 9
samples randomly selected from 55 plots are used in this study,
and how many samples can achieve the best result need further
investigation.

Spectral mixture analysis method based on the simulation of
real scenario is successfully applied in this study, and this
method can also be applied in other types of ground objects.

4.2 Reflectance of endmembers and the linear spectral
mixture analysis

Image endmembers is difficult to represent the real proper-
ties of ground objects as mentioned earlier. Although the result
of the reference endmembers used in pixel scale after assump-
tion is similar with the image endmembers, this will still cause
some uncertainty (Li & Cai, 2005) and need further study. The
simulated endmembers has good result. Firstly, the simulated
endmembers can effectively represent the forest background
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information within pixel reflectance when the forest back-
ground is not selected as an endmember. Because the advantage
of the simulated endmembers overcomes the dif- ficulty of the
understory information extraction and the inco- mpleteness of
endmembers selection, the simulated endmember method is
more stable. Secondly, the reflectance of sunlit canopy in
simulated endmembers is higher than other two endmembers
(Fig.6). This implies that simulated endmembers are affected by
other factors to some extent and obtained more “pure” sunlit
canopy endmember. The simulated endmembers also over-
comes the “impure” image endmembers. The back- ground of
simulated endmembers can represent the understory informa-
tion well in pixel scale, and the results of spectral mixture
analysis are good.

The spectral mixture analysis includes 5 major models as
mentioned above. Linear spectral mixture analysis is used in
this study, and the performances of other methods need to be
further analyzed.

There are several reasons for the entire TM image in Anji
country was not used as experimental data. Firstly, the complex
types of ground objects in research area will not help to visual
interpretation when the entire image is used. Secondly, the full
constraint least squares method used in this study requires
abundance of product and inverse of matrix, which consume a
large time (Tong, 2006). Third, the robustness of the real sce-
nario modeling can be tasted when the experimental image does
not contain the observed sample plots. Therefore, the simulated
endmembers used in a large area still remain some technical
issues, especially the complex of ground objects and mathe-
matical algorithms.

5 CONCLUSIONS

The spectral mixture analysis methods are summarized in
this study, and some problems are proposed. In order to over-
come the limitation of the original spectral mixture me- thods, a
scenario simulated method is introduced and used in moso
bamboo forest. Then the simulated endmember method is
compared with image endmember method and reference end-
member method. The results indicates that the simulated end-
member method has the highest precision and good robust per-
formance. Subsequently, the performance of simulated end-
member method is the best in application. The advantage of the
real scenario simulation is to use field data as a priori knowledge
for endmember extraction and introduces a three-dimensional
simulation model into a two-dimensional linear spectral de-
composition.
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