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Abstract: The cloud cover is an important factor which lowers the remote sensing image quality, so real-time automatic cloud
detection and effective rejection of high cloud coverage pictures are of prime importance. In this paper we proposed a high per-
formance and high accuracy algorithm of cloud detection which combines two different analytical techniques: the spectrum
threshold comparison and the texture analysis. These two approaches discriminate the image from different visions. A structure
of the discrimination tree is proposed to improve the accuracy and to accelerate the detecting procedure, which defines the rule
how to use these two methods properly. The cloud detection results gained by this algorithm are well satisfied. And the structure
of the discrimination tree promotes the operating efficiency on average. We also proposed an advanced approach to calculate the
fractal dimension value, which is about five times faster than the original approach. The cloud detection algorithm has been ap-
plied to the data processing system of China-Brazil Earth Resources Satellite-2B. The experimental results show that this algo-
rithm can satisfy the demand of error rate: the false alarm rate is lower than 5% and the missed detection rate is lower than 10%.
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1 INTRODUCTION

The remote sensing images acquired by space-borne optical
remote sensing systems have been applied to many fields such
as meteorological observation and forecast, Earth resources
surveys, environmental contamination detection, natural disas-
ters monitoring and so on. During the process of the remote
sensing imaging it is hard to obtain complete clear images
without cloud. The presence of cloud may obstruct the use of
certain image data, for the information of objects on the earth is
lost because of the cloud coverage. This will influence the
analysis and interpretation of the images as well. Therefore, a
real-time cloud detection process is required to distinguish the
parts covered by cloud from the parts cloudless. And rejecting
the cloudy parts of the images can obtain better utilization of
expensive satellite resources such as storage device and
downlink bandwidth. In nature, there are a great variety of
clouds, and their texture features are random. These diversities
are mainly caused by the geographical positions, seasons, cli-
mate, etc. So cloud detection is a difficult problem in the field
of remote sensing image processing. A lot of cloud detection
algorithms have been proposed. The theory of early approaches
is based on the observation that clouds are highly reflection and
cold. These approaches compare the gray levels of pixels with a
threshold value to distinguish clouds and objects. At present,
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many researchers study higher accuracy cloud detection algo-
rithms based on the threshold comparison method, such as
homomorphic filtering (Li et al., 2003), statistical analysis,
clustering (Liu et al., 2007;Wang et al., 2006), multi-spectral
analysis (Loyola, 1998; Song & Zhao, 2003), etc. Other re-
searchers propose the texture analysis (Yu et al., 2006) on the
basis of the characteristics of the texture. Texture analysis can
obtain a better discriminating accuracy. In practical applications,
applying which kind of cloud detection algorithm is according
to the properties of remote sensing images and the scenarios of
applications.

The China-Brazil Earth Resources Satellite program is a
technological cooperation program between China and Brazil
which develops and operates Earth observation satellites. The
third satellite of the series, CBERS-2B (China-Brazil Earth
Resources Satellite-2B), was successfully launched on Sep-
tember 19, 2007. In China, CBERS-2B is the first satellite
which carried the High Resolution Panchromatic Camera
(HRC). The theoretical spatial resolution of this camera is 2.4m.
CCD Camera is also on the satellite. And they both work in
visible and near infrared bands. The technical parameters of
CBERS-2B camera are shown in Table 1.

This paper proposed a discrimination tree which combines
the spectrum threshold method and texture analysis method.
This structure of the discrimination tree can not only effectively
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Table 1 Technical parameters of CBERS-2B camera

Band Wavelength/um  Spatial resolution/m

1 0.45—0.52 19.5

2 0.52—0.59 195

CCD camera 3 0.63—0.69 19.5
4 0.77—0.89 19.5

5 0.51—0.73 19.5

High resolution 0.50—0.80 24

panchromatic camera

distinguish the clouds and objects, but also improve the proc-
essing speed. The cloud detection algorithm based upon the
structure of the discrimination tree can be widely used to the
single-spectral remote sensing image. We also proposed an
advanced approach to calculate the fractal dimension value,
which can simplify the algorithm and speed up the processing
and have no influence on the detection accuracy. The cloud
detection algorithm has already been implemented and applied
to the image processing system of CBERS-2B.

In this paper, we also investigated how to extend the appli-
cations of the cloud detection algorithm. The resources on the
remote sensing satellite system are very limited compared with
that of the ground system for there are many constraints in
technique and conditions in the satellite. So how to make full
use of the resources and improve the system performance be-
comes an important research subject.

2 TRADITIONAL CLOUD DETECTION ALGOR-
ITHMS

At present, the most common cloud detection algorithms are
based upon the spectral information or the texture information.
The spectral analysis distinguishes the clouds and the objects
according to the difference of the reflectance and the tempera-
ture in the visible and infrared band; texture analysis makes the
classification by extracting the spatial statistic feature in the
images.

2.1 Spectrum threshold method

The gray value of cloud is much greater than that of objects
on the earth, because the cloud has higher reflectivity. This is
the basic theory of spectrum threshold method, which was ap-
plied to detect the cloud at the very beginning. With the devel-
opment of multi-spectral sensor, the remote sensing platform
can acquire more information. So the detection accuracy can be
promoted by extracting the characteristics of cloud and objects
in different bands. There are two main ways of choosing the
threshold value (Gonzalez & Woods, 2006): analyzing the his-
torical data and extracting information from the image itself.
The former may obtain the statistic optimal value, but the in-
formation of the image itself is not considered. So it can not
guarantee to get the good detection results of every picture. The
latter makes good use of the image information, but may en-
counter the problem of choosing wrong threshold value.

The spectral analysis method is simple and easy to realize.
Its high-efficiency characteristic is ideally suited for the large
scale data processing in the remote sensing image system. It
works well especially under the black background. The large
amount of information provided by the multi-spectral sensor
enables the algorithm to get more accurate detection results.
But the spectrum threshold method is sensitive to threshold
value and can be affected by noise. The image data are proc-
essed pixel by pixel, leaving the structure information out of
consideration.

2.2 Texture analysis

Because the spectral analysis processes the image pixel by
pixel and leaves the context information out of consideration,
some scholars propose the texture analysis method. The texture
feathers of cloud are random and variable, but they are still
different from those of the objects on the earth. Texture analysis
(Yu et al., 2006) is based on spatial frequencies and yields
characterizations of textures as smooth, coarse, grainy etcetera.
Many natural surfaces such as the coastline and the cloud have
a statistical quality of roughness and self-similarity at different
scales. This kind of similarity, that the shape of a part is similar
to that of the whole, is the most peculiar feature of a shape that
have no characteristic length. The fractal and co-occurrence
matrix are two good methods of extracting the texture feature
from images.

2.2.1 Fractal dimension

Fractal theory (Takayasu, 1990) believes that many things in
nature are consistent with certain features, such as
self-similarity, fine geometry and so on. Fractal dimension is
used to describe the complexity of the fractal. One of the most
widely used definitions of the fractal dimension is box-counting
dimension (Zhang et al., 2005; Li et al., 2003).

For the gray-scale image, we can consider the
two-dimensional image as a surface (x, y, f(x, y)) in
three-dimensional space, and f(x, y) is the gray value of the
pixel in position (x, y). The variation of gray value reflects the
roughness of the surface. The fractal dimension is calculated by
using different scales to measure the surface. Firstly, we sepa-
rate the MxM image into many rxr grids in accordance with
scale r. On each grid, there are a line of rxrxh boxes. Symbol h

presents the height of single box, and h :erG/MJ , Where

G is the total number of the gray levels. Given the grid (i, j),
suppose that the minimum gray value is in box k and the
maximum gray value is in box I. The minimum amount of
boxes that can cover all the gray values in grid is:
n(i,j)=1-k+1 (1)
Then the amount of boxes that can cover all the images can
be calculated by the following formula:

Nr =20 (i ) @)
ij
Fractal dimension value is:
— lim 129(N:) ®)
log(1/r)
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We need to define a series of r values, and then draw a scat-
ter diagram with log(1/r) as abscissa, and log(N,) as longitudi-
nal coordinates. By simulating the sample points with least
square method, we can get the slope of the line which is the
value of the fractal dimension, as shown in Fig. 1.

log (V)

log (1/r)]

Fig. 1 Fractal dimension D

Fractal dimension value reflects the complexity of the tex-
ture feature. The greater the value is, the more complex the
fractal is, and vice versa. In the remote sensing images, the
ground target has more texture details and its gray value
changes obviously, so its fractal dimension value is greater than
that of the cloud, for the cloud contains less texture details and
its gray value changes smoothly.

2.2.2 Gray level co-occurrence matrix

Gray level co-occurrence matrix is another effective ap-
proach of extracting the texture feature (Li, 2006). Gray level
co-occurrence matrix reveals certain properties about the spatial
distribution of the gray levels in the texture image. The GxG
gray level co-occurrence matrix P for a displacement vector d =
(AX, Ay) is defined as follows. The entry (i, j) of P is the num-
ber of occurrences of the pair of gray levels i and j which are a
distance d apart. Formally, it is given as:

P, J) = #{(x4, Y1), (X2, Y2) e M xN| f(xq, 1) =1, f (X2, ¥5) = j}

)
where #(x) presents the number of the element in set x, P is an
NgxNg matrix, f(x, y) is a two-dimension digital image, MxN is
the size of the image, Ny is the gray level.

Haralick has proposed a number of useful texture features
that can be computed from the co-occurrence matrix. Angular
second moment (energy) is one of them which reflects the
regularity of the texture. It is defined as follows:

ASM =33 [p(i. )I° (5)
i

where p(i, j) is the value of entry (i, j) in normalized gray level
co-occurrence matrix.

The coarse texture contains more energy, its angular second
moment value is greater, and vice versa. According to this the-
ory, clouds have greater value of angular second moment than
ground objects.

Texture analysis approach requires plentiful sample data to
get the characteristics of different subjects. The quantity and

quality of the samples directly influence the accuracy of the
algorithm.

3 CLOUD DETECTION ALGORITHM BASED ON
TEH DISCRIMINATION TREE

As Section 2 describes, the spectrum threshold method and
the texture analysis method can get the satisfied results under
certain situation, but they both have disadvantages. The spec-
trum threshold method makes full use of the characteristic of
reflectivity, but processes the image pixel by pixel, leaving the
spatial context information out of consideration. While the tex-
ture analysis method analyzes the relationship between pixels,
extracts the features of the surface in terms of roughness, simi-
larity and so on, but it ignores the particular spectral features.

High Resolution Panchromatic Camera (HRC) and CCD
Camera carried on the CBERS-2B satellite are both work in
visible and near infrared bands. So the multi-spectral threshold
approach is not suitable. A recent study (Luis et al., 2006)
shows that the cloud detection result in near infrared bands is
much better than in visible bands. Therefore, B4 band (wave-
length: 0.77—0.89um) is most expected band in the process of

detection, and B3 band (wavelength: 0.63—0.69um) and B5
band (wavelength: 0.51—0.73um) are preferred, too.

3.1 Feature values

To process fast, optimizations are required. In this section,
we discuss how to select the feature parameters and extract
them. And we also elaborate an advanced fractal dimension
computing method.

3.1.1 Threshold

The threshold value is a key parameter, which severely af-
fects the accuracy of the detection. We extract the threshold
value from the historical image data. Because this approach
does not require the other information and the threshold value
will get closer to the optimal value as the data increase. We
choose 169943040 sample pixels of the remote sensing images
acquired by CBERS-2B to evaluate the threshold value. There
are approximate 95% sample points whose gray values are be-
tween 200 and 255, so we select 200 as the threshold value.

Traditional spectrum threshold method processes the images
pixel by pixel, but texture analysis method processes the images
by NxN sub-image. So some modifications should be made to
unify the processing unit. In this case, the concept of cloud
threshold percent is put forward that presents the percentage of
the cloud pixels in an NxN sub-image. According to the cloud
threshold percentage, the algorithm classifies the sub-image
into different categories. The critical value is estimated by
training the sample data.

3.1.2 Advanced fractal dimension method
Calculating the fractal dimension value is a time-consuming
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and computing-intensive task (Ding et al., 2006). The proce-
dure contains several traversals of image data and large amount
of complicated calculating operations. In order to improve the
efficiency, we optimize the procedure of calculating the fractal
dimension by recording the intermediate results and simplifying
the formula.

Texture analysis processes the image by 64x64 sub-images.
The scale factor r is of great importance for the accuracy of the
results. If the scale factor r is too small, the results will be too
sensitive to the noise; on the other hand if it is too big, it will be
hard to extract the texture characteristics. Thinking over the
size of sub-image and the texture feature to be extracted, the
scale factor r is defined as 4, 8 and 16. There are certain spatial
relationships between the divided data sub-blocks, shown as
Fig. 2. The maximum and minimum value in scale 8 data
sub-block must be one of the maximum and minimum values in
scale 4 data sub-block in the same position. The relationship
between scale 16 and scale 8 is the same. So we can accomplish
the calculation just through once traversal of the image by re-
cording the intermediate results. Firstly, we divide the image in
scale 4, and find the maximum and minimum value of each
sub-block. Then we record the maximum and minimum value
in form of intermediate results. When processing the scale 8
sub-blocks, we search the intermediate results instead of the
original image to find the maximum and minimum value. The
same approach applies to scale 16. This method obviously re-
duces the traversal and the comparison operation, and improves

Algorithm CAL_D (){
for (i=0; i<image_height; i+=4) {
for (j=0; j<image_width; j+=4) {
Find max and min value;
Save the max and min value;
Compute nr4;

}
for (i=0; i< image_height/4; i+=2) {
for (j=0; j< image_width/4; j+=2) {
Find max and min value;
Compute nrl6;

}

Compute and return D_value;

Since the characteristics of images acquired by different
sensors and in different bands are quit differently, we need to
train the image data separately. We choose 41490 cloud
sub-images and 31950 object sub-images as the samples. The
training results are shown in Fig. 3 and Fig. 4.

The fractal dimension values of cloud sub-images are
lumped. About 43% fractal dimension values are 2.0, and 98%
are between 1.9534 and 2.4500. In contrast, the fractal dimen-
sion values of object sub-images are dispersive. The values
evenly distribute within the range between 1.8 and 2.3. The

the efficiency of the algorithm.

Fig. 2 The spatial relationship of scale factor 4, 8 and 16

Because the procedure computing log(1/r), log(N,) and
simulating the sample points with least square method contains
multiplicaton, division and log operations, the operations are
complex and time-consuming for hardware implementation. By
expanding and simplifying the formula we can redefine the
formula of the fractal dimension as follows:

D = (log)** —log)¢)/ 2 (6)
(* Division operation can be replaced by shift operation)
Ng disappeared in the new formula, so we do not need to

perform box-counting operation in scale 8. The pseudo-code of
the algorithm is as follows:

/Iscale r=4, computing nr

/Isave the intermediate results

/scale r=16, computing nr

training results indicate that if the fractal dimension values are
in range of 1.9534 and 2.4500, the possibility for cloud is great.
But it can not distinguish the cloud and object very clearly. In
practice, the range of the fractal dimension value changes as the
image data acquired by satellite increase.
3.1.3 Angular Second moment

The angular second moment also needs plenty of samples to
be trained to obtain the distributed space. We use the same
samples as training the fractal dimension value. The results are
shown in Fig. 5 and Fig. 6.
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Fig. 3 The distribution of the fractal dimension value of cloud
The fractal dimension value in abscissa 2.0 is far beyond the confine of presenta-
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Fig.4 The distribution of the fractal dimension value of ground-objects
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Fig. 5 The distribution of the energy feature of cloud
The angular second moment value in abscissa 1.0 is far beyond
the confine of presentation
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Fig. 6 The distribution of the energy feature of ground-objects

The angular second moment values of cloud sub-images are
relatively concentrated. About 38% angular second moment
values are 1.0, and more than 50% are between 0.9150 and
1.0000. The angular second moment values of object
sub-images are mainly distributed between 0.0365 and 0.2584.
The training results shown in Fig. 5 and Fig. 6 indicate the an-

How to use these two methods described above properly has
a great impact on the detection accuracy. Gray value is a key
parameter which is used to distinguish the cloud and cloud-free
pixels roughly. It is helpful to begin with a rough and ready
classification. But the noise and the snow can not be separated
from the cloud by the gray value. This will decrease the accu-
racy. These misjudged-pixels are able to be excluded by the
space context because the texture features of clouds and objects
are quite different. So the texture analysis approach can make
the accurate classification. The fractal dimension and the angu-
lar second moment are two texture feature parameters describ-
ing the image texture characteristics from different aspects. The
fractal module focuses on the self-similarities of irregular im-
ages and is adequate for classification, while the angular second
moment measures the uniformity of the distribution of gray
level and is suitable to distinguish the congener objects. The
structure of the discrimination tree is proposed to take the ad-
vantage of these parameters. Fig. 7 shows the structure of the
discrimination tree.

According to the structure of the discrimination tree, the
sub-images are classified into three categories: cloud-like
(probably is cloud), object and ambiguous (may be cloud, may
be object). Different categories will take different processing
procedure. The sub-images in object group have accomplished
the classification. The sub-images in cloud-like group need to
be reconfirmed by the texture feature. If the fractal dimension
value is in the range of the cloud, then the sub-image is deter-
mined to be cloud. Otherwise, the angular second moment will
be calculated to make sure the sub-image not be misjudged
(missed detection). The same approach can be used in ambigu-
ous group. The angular second moment is used to reduce the
false alarming rate. By using the structure of the discrimination
tree we can not only promote the detection accuracy but also
improve the average efficiency of the algorithm, since there is
no need to calculate all the parameters of the features to ac-
complish the classification in the whole procedure. In the dis-
crimination tree, the leaf node is the result of the detection. So
the calculations of fractal dimension and angular second mo-
ment which are intensive computing and time-consuming tasks
can be omitted in some cases. This structure is very suitable for
the large-scale images processing scenario.

4 EXPERIMENTAL RESULTS ANALYSIS AND
ALGORITHM APPLICATION

In this section, results from testing the cloud detection al-
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gorithm are presented. We use the real gray-scale image data
acquired by CBERS-2B. The algorithm performance and detec-
tion accuracy are analyzed and discussed.

4.1 Performance

The advanced fractal dimension procedure and the structure
of the discrimination tree proposed in this paper can obviously
improve the efficiency of the cloud detection algorithm. The
advanced fractal dimension procedure reduces image traversals
and complex computing operations. And the structure of the
discrimination tree speeds up the average running time.

4.1.1 The advanced fractal dimension procedure

The improvements of performance brought by the advanced
fractal dimension procedure are mainly manifested in two as-
pects: on the one hand, the advanced fractal dimension proce-
dure takes advantage of spatial location of different scales to
reduce the image traversals by saving the intermediate results,
which avoids frequent memory access; on the other hand, the
advanced fractal dimension procedure simplifies the equation,
which eliminates a lot of complex operations. The comparison
of the original method and advanced method is shown in Table 2.
All the summarized values are based on the 64x64 sub-image.

Sub-image

Spectrum threshold comparison

Cloud_ percent=>80%

20%=cloud_percent=-80%
I

Cloud_ percent<20%

Probably is
cloud

May be cloud,
may be object

Object

Calculate D value

1.9534=D=2.4500 D<1.9534 or D=2.4500

Calculate D value

D<1.9534 or|D>2.4500 | 1.9534=D=2.4500

Cloud Undetermined

Object Undetermined

Calculate ASM

Calculate ASM

ASM<0.9150 or ASM<0.9150 or
0.9150<ASM=1.0000 ASM>1.0000 0.9150<ASM<1.0000 | ASM=>1.0000
Cloud Object Cloud Object

Cloud_ percent: cloud threshold

percent

D: fractal dimension

ASM: angular second moment

Fig. 7 The structure of the discrimination tree of the cloud detection algorithm

Table 2 Comparison between advanced fractal dimension algorithm and fractal dimension algorithm

Traversal Times Log operation

Multiply operation

Divide operation Comparison operation

Original method 3 18

Advanced method 1 2

10 1 23904

0 o* 8160

# Division operation can be replaced by shift operation.

From Table 2, we can see that image traversals reduced from
3 to 1, and the complex operations reduced by two-thirds at
least. Meanwhile, the software program has been optimized
which promoted the efficiency further. We select 42120
sub-images in size of 64x64, whose total volume is 165MB,
and verify the algorithm in personal computer. The hardware
configuration of the computer is as follows: a Pentium 4
3.06GHz CPU, DDR2 800MHz 1.50GB memories and an

80GB hard disk. The time consumed by different algorithm is
shown in Table 3.

Table 3 Efficiency comparison between advanced fractal dimen-
sion algorithm and fractal dimension algorithm

Processing time/s

Original method 18.463

Advanced method 3.313
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The errors of the original method mainly come from the
calculation error of the least square method. The advanced al-
gorithm just makes use of the spatial location of different scales
and simplifies the formulation. Therefore, there is no change in
the accuracy of advanced method compared with the original
method.

4.1.2 The structure of the discrimination tree

By using the structure of the discrimination tree we could
obtain the detection results without calculating all the parame-
ters. So the structure of the discrimination tree can improve the
average performance of the algorithm.

The execution path is closely related to the cloud coverage
of the image. We select three typical images: almost all the
clouds, almost clouds free and partly clouds. Each category
picks 6 images in size of 6132x5812. Under the same test en-
vironment, each image is processed by the algorithm using the
structure of discrimination tree and the algorithm not using the
structure of discrimination tree respectively. Table 4 recorded
the average testing results.

Table 4 Running time of this two discrimination structure

Using the structure of
the discrimination tree/s

Not using the structure of
the discrimination tree/s

Almost clouds free 0.224 2.365
Almost all the

clouds 0.794 2.254

Partly clouds 0.972 2431

From these results we can see that the structure of the dis-
crimination tree improves the average performance of the algo-
rithm, especially in the case of almost clouds and almost clouds
free. The processing time shortens more than ten times at best.
For the image partly covered by clouds, the algorithm effi-
ciency is promoted too.

4.2 Accuracy

We process the real remote sensing images acquired by the
China-Brazil Earth Resources Satellite-2B using the cloud de-
tection algorithm proposed in this paper. The results output the
cloud coverage of the image (the image is divided into four
parts: top left, top right, bottom left and bottom right) and the
cloud extracting images. The two critical evaluation criterions
of the accuracy of the algorithm are the false alarming rate
(misidentified the object as the cloud) and the missed detection
rate (misidentified the cloud as the object). The experimental
results illustrate that the false alarming rate is less than 5% and
the missed detection rate is less than 10%. Fig. 8(a) and Fig. 9(a)
show the original remote sensing images. And the detection
results are shown in Table 5.

Fig. 8(b) and Fig. 9(b) show the cloud extraction images.

Table 5 Cover rate result of the cloud detection

Top left/% Top right/%  Bottom left/% Bottom right/%

Fig. 8(a) 37.15 99.58 55.26 84.69
Fig. 9(a) 83.26 88.39 14.35 3.84

Fig. 8 Plain area image data acquired by CBERS-2B
(a) Original image; (b) Extract image of cloud

s

(b)

Fig. 9 Mountain area image data acquired by CBERS-2B
(a) Original image; (b) Extract image of cloud

The cloud detection algorithm is of high universality for the
optical remote sensing images. In order to prove it, we verify
the algorithm with new remote sensing images which acquired
by another satellite working in visible and near infrared bands.
The raw images are shown in Fig. 10 (a) and Fig. 11(a) and the
cloud coverage results calculated by the algorithm are presented
in Table 6. The cloud extraction images are shown in Fig. 10(b)
and Fig. 11(b).

Table 6 Cover rate result of the cloud detection

Top left/% Top right/% Bottom left/%  Bottom right/%
Fig. 10(a) 31.50 90.29 66.17 85.13
Fig. 11(a) 13.11 77.46 95.91 97.57

In most cases, the cloud detection algorithm classifies the
clouds and the objects efficiently and accurately. But the false
detection and missed detection still exist. The false detection is
mainly caused by the snow, because the spectral feature and the
texture feature of snow are strikingly similar to those of clouds.
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(a)

Fig. 10 Plateau area image data acquired by optical remote sensing
satellite a
(a) Original image; (b) Extract image of cloud

(b)

Fig. 11 Plain area image data acquired by optical remote sensing
satellite a
(a) Original image; (b) Extract image of cloud

The missed detection mainly results from cloud edges. The
cloud edges change sharply and have more details which were
more like the feature of the objects on the earth. These prob-
lems are the places which need to be studied and improved.

At the present day, the cloud detection results are mainly
used to discard the “useless” images, or evaluate the remote
sensing image quality. The potential information is not utilized
effectively. On the other hand, the resources of remote sensing
system are expensive and limited. So how to make full use of
the information to improve the utilization and performance of
the system is becoming the hot research topic in this field.

Selective compressing or discarding data is a form of dy-
namic scheduling, which can save the storage and downlink
resources. It is an effective policy to increase resource utiliza-
tion rate and improve the system performance. Another excel-
lent policy is cloud cover avoidance mechanism, which formu-
lated by effectively predicting the cloud cover situation (Algra,
2002). The prediction is based on the cloud information associ-

ated with the digital climate models or the historical meteoro-
logical data. There are two cloud cover avoidance methods:
selective imaging and cloud editing. Selective imaging means
that the remote sensor only records the parts of cloudlessness
area by the prediction; cloud editing is a process implying that
parts of the image data that are cloud covered are discarded, or
represented in only one band or represented at a lower resolu-
tion. Additionally, if the cloud sensing provides the ability to
point the optical axis of the satellite remote sensing instrument
to cloud-free areas on the basis of previously acquiring cloud
cover information (Algra, 2003), the effective imaging capacity
of the mission can be remarkably improved.

5 CONCLUSIONS

This paper introduced in detail the fundamental principle of
the spectrum threshold method and texture analysis method,
and further in-depth studied the influence on detection accuracy
of different criterions. We proposed an advanced fractal dimen-
sion computational method which can enhance the performance
with no impact on the accuracy. We also proposed a structure of
the discrimination tree which defined how to use the criterion
properly. The cloud detection algorithm has been implemented
by software, and verified using the real remote sensing data.
The results illustrate the good performance and high detection
accuracy. We also investigated the potential application of the
cloud detection algorithm.
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